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Summary
Providing generalization guarantees for modern neural networks has been a crucial task in statistical
learning. Recently, several studies have attempted to analyze the generalization error in such settings
by using tools from fractal geometry. While these works have successfully introduced new mathematical
tools to apprehend generalization, they heavily rely on a Lipschitz continuity assumption, which in general
does not hold for neural networks and might make the bounds vacuous.

In this Master Thesis, we address this issue and prove fractal geometry-based generalization bounds
without requiring any Lipschitz assumption. To achieve this goal, we build up on a classical covering
argument in learning theory and introduce a data-dependent fractal dimension. Despite introducing a
significant amount of technical complications, this new notion lets us control the generalization error
(over either fixed or random hypothesis spaces) along with certain mutual information (MI) terms. To
provide a clearer interpretation to the newly introduced MI terms, as a next step, we introduce a notion
of ‘geometric stability’ and link our bounds to the prior art.

Finally, we make a rigorous connection between the proposed data-dependent dimension and
topological data analysis tools, which then enables us to compute the dimension in a numerically efficient
way. We support our theory with experiments conducted on various settings.

P.S.: This Master Thesis, conducted at INRIA Paris, under the supervision of Umut Şimşekli and
George Deligiannidis (from Oxford University) resulted, among other things, in the submission of a paper
at the International Conference on Machine Learning (ICML 2023). This submission can be found online
(Dupuis et al., 2023), which I have written.

The subject of the aforementioned paper being precisely the one of this thesis, some parts of
it are reproduced or adapted directly in this work. Moreover, this thesis makes a lot more detailed
introduction to the technical background on which the results and experiments rely. Moreover, several
additional results are presented, such as technical measure-theoretic statements (in particular Theorems
4.1, 5.1 and 5.2) which imply that some assumptions in the paper are not necessary. Other supplementary
results, such as Theorem B.1, present interesting applications of the proof techniques used in the paper.
For consistency with the published paper, ‘we’ is used everywhere in this report.
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1 Introduction
Understanding the generalization properties of modern neural networks has been one of the major
challenges in statistical learning theory over the last decade. In a classical supervised learning setting,
this task boils down to understanding the so-called generalization error, which arises from the classical
population risk minimization problem, given as by

min
w∈Rd

{
R(w) := E(x,y)∼µz

[L(hw(x), y)]
}
, (1)

where x ∈ X denotes the features, y ∈ Y denotes the labels, µz denotes a probability distribution on the
data space Z = X × Y, referred to as the data distribution, hw : X −→ Y denotes a parametric predictor
with w ∈ Rd being its parameter vector, L : Y × Y −→ R denotes the loss function.

In all the following we will write the elements of Z as z = (x, y) ∈ X ×Y and ℓ for the composition
of the loss function L and the parametric predictor hw, i.e.

ℓ : Rd × Z ∋ (w, z) 7−→ ℓ(w, z) = ℓ(w, (x, y)) = L(hw(x), y).

With a slight abuse of notation, we will refer to ℓ as the ‘loss’ in all the following.
As µz is unknown, in practice, to approximate the optimization problem described by (1), one

resorts to the minimization of the empirical risk, given by

R̂S(w) := 1
n

n∑
i=1

ℓ(w, zi), (2)

where S := (zi)1≤i≤n ∼ µ⊗n
z is a set of independent and identically distributed (i.i.d.) data points. Then,

our goal is to bound the worst-case generalization error that is defined as the gap between the population
and empirical risk over a (potentially random) hypothesis set W ⊂ Rd:

G(S) := sup
w∈W

(
R(w) − R̂S(w)

)
. (3)

This will be formalized more rigorously in Section 1.1.
In the context of neural networks, one peculiar observation has been that, even when a network

contains millions of parameters (i.e., d ≫ 1), it might still generalize well (Zhang et al., 2017), despite
accepted wisdom in classical statistical learning theory suggesting that typically G ≈

√
d/n (Anthony

and Barlett, 1999).
To provide a theoretical understanding for this behavior, several directions have been explored,

such as compression-based approaches (Arora et al., 2018; Suzuki et al., 2020; Barsbey et al., 2021) and
the approaches focusing on the double-descent phenomenon (Belkin et al., 2019; Nakkiran et al., 2019).
Recently, there has been an increasing interest in examining the role of ‘algorithm dynamics’ on this
phenomenon. In particular, it has been illustrated that, in the case where a stochastic optimization
algorithm is used for minimizing (2), the optimization trajectories or their invariant distribution can
exhibit a fractal structure (Şimşekli et al., 2021; Camuto et al., 2021; Birdal et al., 2021; Hodgkinson
et al., 2022). This master thesis aims at studying and improving this fractal geometric approach. Let us
first informally describe their results.

Under the assumption that ℓ is uniformly bounded by some B and uniformly L-Lipschitz with
respect to w, the aforementioned can be informally summarized as follows: with probability 1 − ζ, we
have that

G ≲ LB

√
d̄(W) + I∞(W, S) + log(1/ζ)

n
, (4)

where the symbol ≲ means that we didn’t write absolute constants and/or small logarithmic terms
appearing in those results. Equation 4 informally sums-up various results1. In Equation (4), the following
notations are used: W is a data-dependent hypothesis set, which is provided by the learning algorithm,
d̄(W) is a notion of fractal dimension of W, and I∞(W, S) denotes the total mutual information between

1In (Şimşekli et al., 2021; Camuto et al., 2021) the bound is logarithmic in L. (Şimşekli et al., 2021) only requires sub-
Gaussian losses while (Camuto et al., 2021) requires sub-exponential losses. Their common points is to require a Lipschitz
assumption.
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the data S and the hypothesis set W. These two last notions will be formally defined in Sections 2.3
and 3 respectively. In the case where the intrinsic dimension d̄(W) is significantly smaller than the
ambient dimension d (which has been empirically illustrated in (Şimşekli et al., 2021; Birdal et al.,
2021)), the bound in (4) provides an explanation on why overparameterized networks might not overfit in
practice. Moreover, existing results provide examples of stochastic processes having low fractal dimensions
compared to the ambient space dimension (Xiao, 2004).

While these bounds have brought a new perspective on understanding generalization, they also
possess an important drawback, that is they all rely on a uniform Lipschitz continuity assumption on ℓ
(with respect to the parameters), which is too strict to hold for deep learning models. While it is clear
that we cannot expect Lipschitz continuity of a neural network when the parameter space is unbounded,
Herrera et al. (2020) showed that, even for the bounded domains, the Lipschitz constants of fully connected
networks are typically polynomial in the width, exponential in depth and linear in the input data, which
may be excessively large in practical settings; hence might make the bounds vacuous.

The Lipschitz assumption is required in (Şimşekli et al., 2021; Birdal et al., 2021; Camuto et al.,
2021) as it enables the use of a fractal dimension defined through the Euclidean distance on the hypothesis
set W (which is independent of the data). Hence, another downside of the Lipschitz assumption is that, the
Euclidean distance-based dimension unfortunately ignores certain important components of the learning
problem, such as how the loss ℓ behaves over the hypothesis set or trajectory W. As shown in (Jiang et al.,
2019) in the case sharpness measures (Keskar et al., 2017), which measure the sensitivity of the empirical
risk around local minima and correlate well with generalization, the data-dependence may improve the
ability of a complexity measure to explain generalization.

In this study, our main goal is to address the aforementioned issues by proving fractal geometric
generalization bounds without requiring any Lipschitz assumptions. Inspired by a classical approach for
bounding the Rademacher complexity (defined formally in Section 2.2), we achieve this goal by making
use of a data-dependent pseudo-metric on the hypothesis set W.

1.1 Mathematical framework
Before describing the structure of this thesis, let us clearly state the mathematical settings in which our
results will be proven.

We formalize the learning algorithm as follows. The probability data-space is denoted by (Z,F , µz).
For measure theoretic reasons, we will assume that Z may be endowed with a structure of separable
metric space such that F is the corresponding Borel σ-algebra. A learning algorithm A is seen as a
map generating a random closed set WS,U (see (Molchanov, 2017, Definition 1.1.1)) from the data S and
an external random variable U accounting for the randomness of the learning algorithm. The external
randomness U takes values in some probability space (ΩU ,FU , µu) and has distribution µu. Moreover,
we assume that U is independent of S.

Therefore if we write CL(Rd) for the set of closed sets of Rd endowed with the Effrös σ-algebra,
as in (Molchanov, 2017), the algorithm will be written as a measurable map:

A : (S,U) ∈
∞⋃

n=0
Zn × ΩU −→ CL(Rd) ∋ WS,U . (5)

The technical details regarding this setting, especially the notion of random sets, will be given in Section 5.
This formulation encompasses several settings, such as the following examples.

Example 1. Given a continuous time process of the form dWt = −∇f(Wt)dt + Σ(Wt)dXt where Xt

is typically a Brownian motion or a Lévy process, as considered in various studies (Mandt et al., 2016;
Chaudhari and Soatto, 2018; Hu et al., 2018; Jastrzebski et al., 2018; Şimşekli et al., 2021), we can view
WS,U as the set of points of the trajectory {Wt, t ∈ [0, T ]}, where U accounts for randomness coming
from quantities defining the model like Xt.

Example 2. Consider a neural network hw(·) and denote the output of the stochastic gradient descent
(SGD) iterates by A(x0, S, U), where U accounts for random batch indices and x0 is the initialization.
This induces a learning algorithm WS,U =

⋃
x0∈X0

{A(x0, S, U)}, which is closed if X0 is compact under
a continuity assumption on A.
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Example 3. As described in Section 6, our experiments will approximate WS,U as the set of parameters
computed through the iterations of a stochastic optimization algorithm used to train a neural network,
as in prior works (Birdal et al., 2021; Şimşekli et al., 2021). In this case U accounts for randomness in
the batch indices.

Under specific assumptions on the learning algorithm (5) and the loss ℓ : Rd ×Z −→ R (continuity,
boundedness), which will be described later on, we aim to bound the worst-case generalization error over
WS,U , defined by Equation (3).

1.2 Contributions and plan of this work
The first two sections, Sections 2 and 3, will depict some classic mathematical background used throughout
the project. A few classical results will be prove for the sake of completeness. Then, the main theoretical
contributions are presented In Sections 4 and 5. Finally, in Section 6, we will describe our experimental
results, after introducing some tools from topological data analysis.

More precisely, in Section 2 we discuss some probability theory results, namely concentration
inequalities (Section 2.1) and classical statistical learning theory (Section 2.2), especially the notion of
Rademacher complexity on which some of our results are built. Section 2.3 will also introduce various
information theoretic tools that we need in our proofs and results because of their decoupling properties,
as described for example in (Xu and Raginsky, 2017; Hodgkinson et al., 2022).

In Section 3, we expose some basic notions of fractal geometry in metric spaces and describe their
link with generalization as it appears in aforementioned previous results (Şimşekli et al., 2021; Camuto
et al., 2021).

Section 4.3 is devoted to the introduction of a data-dependent pseudo-metric from which we will
define a notion of data-dependent fractal dimension. Based on this notion, we will extend known covering
arguments (Rebeschini, 2020) to prove our first result, which is a generalization bounds without Lipschitz
assumption, in the case of a fixed hypothesis space.

We will then focus on the case of a random hypothesis set, as described in Section 1.1, in Section
5. In particular we prove in Section 5.2 a result of the following form, with similar notations than in
Equation (4):

G ≲ B

√
d̄S(WS,U ) + I + log(1/ζ)

n
, (6)

where d̄S denotes our introduced notion of data-dependent fractal dimension and I is a (total) mutual
information term (see Section 2.3). As opposed to prior work, this bound does not require any Lipschitz
assumption and therefore applies to more general settings. However, this improvement comes at the
expense of having a more complicated mutual information term compared to the one in (4). We will
try to overcome this issue in Section 5.3 by introducing a notion of uniform geometric stability to prove
another result involving mutual information terms which were already used in the literature (Hodgkinson
et al., 2022). To give a stronger theoretical basis to our analysis, we give some basic notions from the
theory of random sets (Molchanov, 2017) and prove a few technical results in Section 5.1, hence solving
potential measure-theoretic issues of this work.

Finally, in Section 6 we extend known results on ‘persistent homology’ (Adams et al., 2020; Birdal
et al., 2021) to prove that our data-dependent intrinsic dimension may be estimated in a numerically
efficient way, using a Python library presented in (Pérez et al., 2021). We are therefore able to confirm
the theory with experiments conducted on various settings.
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2 Probability theory background
In this first section we review a few probabilistic tools which we will use throughout this work.

Sections 2.1 and 2.3 examine some classical notions related to high dimensional probability and
information theory, including proofs of well-known results. Some old and recent applications to generalization
theory are also presented to highlight the link with the problems presented in Section 1, especially the
notion of Rademacher complexity, in Section 2.2, on which we build some of our results.

2.1 Concentration inequalities
One of the key quantity appearing in the generalization defined in Equation (3) is the pointwise generalization
R(w) − R̂S(w) = (1/n)

∑n
i=1(Ez[ℓ(w, z)] − ℓ(w, z)), which is known to converge to 0 for a fixed w, as

stated by the strong law of large numbers. In order to get more precise and non-asymptotic improvements
of this result, one can refer to concentration inequalities, from which we will introduce some basic notion.
More details can be found in (Boucheron et al., 2013; Vershynin, 2020).

2.1.1 Hoeffding’s inequalities

Inspired by concentration property of Bernoulli and normal random variables, ‘sub-Gaussian’ distributions
are introduced as random variables with sub-Gaussian tails. This includes many classical distribution,
like bounded random variables, and is widely used in statistical learning theory. We will define it as
follows (Vershynin, 2020, Definition 2.5.6):

Definition 1 (Sub-Gaussian random variables). Let X be a random variable on some probability space
(Ω,F ,P), then X is said to be sub Gaussian if there exists some σ > 0 such that:

∀ϵ > 0, P(|X| ≥ ϵ) ≤ 2e−ϵ2/σ2
.

In that case, we may say that X is σ2-sub-Gaussian.

Note that as E[|X|] =
∫ ∞

0 P(|X| ≥ ϵ)dϵ this implies that X is integrable. The following proposition
gives some of the equivalent definitions of the sub-Gaussian property:

Proposition 1 (Proposition 2.5.2 in (Vershynin, 2020)). The variable X is sub-Gaussian if and only if
either one of the following is verified (in each statement, Σ denotes a quantity equal to Cσ, where C is
an absolute constant, not necessarily always the same one):

i There exists Σ > 0 such that ∀p ≥ 1, E[|X|p] ≤
(
Σ√

p
)p.

ii There exists Σ > 0 such that E[eX2/Σ2 ] ≤ 2.

iii If X has zero mean, then ∀λ ∈ R, E[eλX ] ≤ eΣ2λ2 .

Our main interest in sub-Gaussian distributions resides in their concentration properties given by
the following inequality from Hoeffding:

Theorem 2.1. Hoeffding’s inequality (Hoeffding, 1963)

Let X1, . . . , Xn be independent, mean-zero, sub-Gaussian random variables with parameters
σ2

1 , . . . , σ
2
n. Let Sn := X1 + · · · +Xn, then for any ϵ > 0 we have

P(|Sn| ≥ ϵ) ≤ 2 exp
(

− aϵ2∑n
i=1 σ

2
i

)
,

where a is an absolute constant.

Proof. Let us fix some λ > 0 and consider the constant Σ1, . . . ,Σn > 0 appearing in the third point
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of Proposition 1, associated to the variables X1, . . . , Xn, we can write:

P(Sn ≥ ϵ) ≤ P(eλSn ≥ eλϵ)
≤ e−λϵE[eλSn ] (Markov’s inequality)

≤ e−λϵ
n∏

i=1
E[eλXi ] (Independence)

≤ e−λϵ
n∏

i=1
E[eλ2Σ2

i ] (Sub-Gaussian property)

= exp
{

− λϵ+ λ2
n∑

i=1
Σ2

i

}
.

A second degree term appears inside the exponential, we can reach its minimum by setting λ =
ϵ/(2

∑
i Σ2

i ), which gives us

P(Sn ≥ ϵ) ≤ exp
(

− −ϵ2

4
∑n

i=1 Σ2
i

)
. (7)

Doing the same reasoning with −Sn in place of Sn and reminding that Σi = Cσi gives us the result.

An important class of sub-Gaussian random variables is that of bounded random variables. In most
of our work, we will need a bounded loss assumption in order to get finite fractal dimensions. However,
as in prior works (Şimşekli et al., 2021; Birdal et al., 2021), some results may hold by replacing the
boundedness assumption by a weaker sub-Gaussian assumption. This is made formal by the well-known
Hoeffding’s lemma:

Lemma 1 (Hoeffding’s lemma). Let a, b ∈ R, if X is a random variable such that a ≤ X ≤ b almost
surely, then

E[eλ(X−E[X])] ≤ exp
(
λ2 (b− a)2

8

)
.

Proof. One classical proof of this result is based on the convexity of the exponential and uses a second
order Taylor expansion of a well-chosen function. Here, we present a proof inspired from (Boucheron
et al., 2013), which may give more intuition.
Without loss of generality, up to use X ′ = X − E[X], we can assume that E[X] = 0. Let us fix some
λ ∈ R.
Let Y be any random variable with values in [a, b] almost surely. Then one has that |Y − (a+ b)/2| ≤
(b− a)/2, so that

V[Y ] = V

[
Y − a+ b

2

]
≤ (b− a)2

4 . (8)

Inspired by this, let us introduce a random variable Y with values in [a, b] such that its law has the
following Radon-Nykodym’s derivative with respect to the law of X:

dY⋆P

dX⋆P
= eλX

E[eλX ] .

By Equation (8) we get that

E[X2eλX ]
E[eλX ] − E[XeλX ]2

E[eλX ]2 ≤ (b− a)2

4 .

Now let us introduce the function ψ : λ 7→ log
(
E[eλX ]

)
. Using the boundedness of X and the

smoothness of the function λ 7→ eλx, it is obvious that we can differentiate under the expectation and
that ψ is of class C2. Therefore

ψ′(λ) = E[XeλX ]
E[eλX ] , ψ′′(λ) = E[X2eλX ]

E[eλX ] − E[XeλX ]2
E[eλX ]2 .

5



Therefore, by using Taylor-Lagrange’s formula around λ = 0, we get that

log
(
E[eλX ]

)
≤ 0 + 0 + λ2

2 .
(b− a)2

4 ,

hence the lemma.
As a corollary, we may state Hoeffding’s inequality for bounded random variables, which we will

use in several proofs.

Corollary 1 (Hoeffding’s inequality for bounded random variables). Let X1, . . . , Xn be random variables
such that for each i we have ai ≤ Xi ≤ bi almost surely. We define Sn := X1 + · · · + Xn, then the two
following inequalities hold:

P(Sn − E[Sn] ≥ ϵ) ≤ exp
(

− −2ϵ2∑n
i=1(bi − ai)2

)
, and

P(|Sn − E[Sn]| ≥ ϵ) ≤ 2 exp
(

− −2ϵ2∑n
i=1(bi − ai)2

)
.

Proof. We follow the exact same steps as in the proof of Theorem 2.1 but we use Hoeffding’s lemma
1 instead of the sub-Gaussian property, which gives us immediately that

P(Sn − E[Sn] ≥ ϵ) ≤ e−λϵ
n∏

i=1
E[eλ(Xi−E[Xi])] ≤ exp

{
− λϵ+ λ2

8

n∑
i=1

(bi − ai)2
}
.

Setting λ = 4ϵ/
∑n

i=1(bi − ai)2 gives us:

P(Sn − E[Sn] ≥ ϵ) ≤ exp
(

− −2ϵ2∑n
i=1(bi − ai)2

)
.

The second inequality is immediately deduced from a symmetry argument.

Example 4. Let us consider the worst-case generalization setting described in the introduction by
Equation 3, where W is assumed to be a non-random (fixed) finite set of cardinal |W|. Let us also
assume that the loss ℓ is uniformly bounded by some B (i.e. |ℓ(w, z)| ≤ B), then applying Hoeffding’s
inequality along with a union bound we get, for every ϵ > 0 that

P

(
sup

w∈W

(
R(w) − R̂S(w)

)
≥ ϵ

)
≤ P

( ⋃
w∈W

(
R(w) − R̂S(w)

)
≥ ϵ

)
≤

∑
w∈W

P
(
R(w) − R̂S(w) ≥ ϵ

))
≤

∑
w∈W

exp
{

− nϵ2

2B2

}
= |W| exp

{
− nϵ2

2B2

}
.

Rearranging the above equation by setting its right hand term equal to some ζ ∈ (0, 1), we get that with
probability at least 1 − ζ over S ∼ µ⊗n

z one has the well known result (Rebeschini, 2020):

sup
w∈W

(
R(w) − R̂S(w)

)
≤

√
2B

√
log |W| + log(1/ζ)

n
. (9)

2.1.2 Mc-Diarmid’s inequality

Let us now introduce another fundamental concentration inequality. Mc-Diarmid inequality is also a
fundamental building block of statistical learning theory, used for instance to prove high probability
bounds on the worst case generalization error (Rebeschini, 2020) with fixed hypothesis set or to leverage
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stability conditions, as described by Bousquet (2002). Rademacher complexity is mainly used for fixed
hypothesis sets, however, more recently, some authors have tried to extend this notion to random
hypothesis sets (Foster et al., 2020). In the context of this project, we were be able to build upon
Rademacher complexity to get our result for a fixed W, while another technique has to be used in the
general case.

This result is based on the so-called bounded difference property, from which we give the following
definition.

Definition 2 (Bounded difference property). Let f : X1 × · · · × Xn → R be some arbitrary measurable
function such that there exists some a1, . . . , an ≥ 0 satisfying, for each i and all (x1, . . . , xn) ∈ X1 × · · · ×
Xn:

∀x′
i ∈ Xi, |f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) − f(x1, . . . , xi−1, xi, xi+1, . . . , xn)| ≤ ai

Let us now state Mc-Diarmid’s inequality.

Theorem 2.2. Mc-Diarmid’s inequality

If f has the bounded difference property and X1, . . . , Xn are independent random variables in the
sets X1, . . . ,Xn, then the two following inequalities hold:

P(f(X1, . . . , Xn) − E[f(X1, . . . , Xn)] ≥ ϵ) ≤ exp
(

− −2ϵ2∑n
i=1 a

2
i

)
, and

P(|f(X1, . . . , Xn) − E[f(X1, . . . , Xn)]| ≥ ϵ) ≤ 2 exp
(

− −2ϵ2∑n
i=1 a

2
i

)
.

2.2 Rademacher complexity
We give in this subsection an important example of the concentration inequalities developed in Section
2.1. Some approaches to explore the generalization property of learning algorithm attempt to relate
generalization to notions of intrinsic dimension of the hypothesis set W, such as the well-known VC
dimension (Vapnik and Chervonenkis, 2015), or notions of complexity of W, such that the celebrated
Rademacher complexity, which we shall now describe. We will then go over the arguments allowing us to
relate this complexity to the worst-case generalization error (3), among other things based on Theorem
2.2, and the concentration properties it exhibits.

As explained in (Rebeschini, 2020), Rademacher complexity measures the capacity of a set to
replicate some random, Bernoulli like, signals. More precisely, we call Rademacher random variables a
tuple (σ1 . . . , σn) of mutually independent Bernoulli distributions with values in the set {−1, 1}, which
means that for each i we have P(Xi = 1) = P(Xi = −1) = 1/2.

Using Rademacher complexity in our setting becomes interesting under the following assumption,
which we make in all this Subsection and further sections when specified:

Assumption 1. The loss ℓ : Rd × Z is continuous and uniformly bounded by some B > 0.

While the continuity is merely used for measure-theoretic reasons, boundedness is essential to apply
and concentration properties related to Rademacher complexity. The following definition introduces the
Rademacher complexity of any fixed set, we will then make an informed choice of such a set.

Definition 3 (Rademacher complexity of a set). Let us consider a fixed set A ⊂ Rn and σ := (σ1 . . . , σn

some Rademacher random variables, the Rademacher complexity of A is defined as

Rad(A) := 1
n
Eσ

[
sup
x∈A

n∑
i=1

σixi

]
.

Let us consider a fixed closed hypothesis set W and some dataset S = (z1, . . . , zn) ∼ µ⊗n
z , we will

use the following notation:

ℓ(W, S) := {(ℓ(w, zi)1≤i≤n ∈ Rn, w ∈ W} ⊆ Rn. (10)
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Intuitively, ℓ(W, S) is the image of the hypothesis set W by an embedding from the parameter
space Rd to the ‘output space’ Rn. The interest of Rademacher complexity in statistical learning theory
comes from the consideration of its evaluation on the set (10), hence denoted Rad(ℓ(W, S)).

Remark 1. One could legitimately inquire about the measurability of Rad(ℓ(W, S)) with respect to F⊗n

(recall that the data space is denoted (Z,F , µz)). Thanks to the closeness of W ⊆ Rd we can introduce
a dense countable subset C of W and write that, thanks to the continuity of ℓ,

R(σ, S) := 1
n

sup
w∈W

n∑
i=1

σiℓ(w, zi) = 1
n

sup
w∈C

n∑
i=1

σiℓ(w, zi),

which is measurable as a countable supremum of random variables. As ℓ is bounded, so is R(σ, S); it is
therefore integrable with respect to (σ, S). Thus Rad(ℓ(W, S)) is integrable (and measurable) thanks to
the first part of Fubini’s theorem.

The quantity Rad(ℓ(W, S)) is linked to generalization via the following proposition (see for
example (Rebeschini, 2020)):

Proposition 2. Assume that the loss is uniformly bounded by B. For all η > 0, we have with probability
1 − 2η that:

sup
w∈W

(
R(w) − R̂S(w)

)
≤ 2Rad(ℓ(W, S)) + 3

√
2B2

n
log(1/η).

The proof of proposition 3, which is written below, is based on two essential arguments: first a
well-known symmetrization argument is used to bound the expected worst-case generalization with the
expected Rademacher complexity, then those two expectations are moved by applying twice Mc-Diarmid
inequality (Theorem 2.2).

Proof. Let us write:
G(S) := sup

w∈W

(
R(w) − R̂S(w)

)
.

We introduce S̃ = {z̃1, . . . , z̃n} ∼ µ⊗n
z an independent copy of S and some Rademacher random

variables (σ1, . . . , σn), using properties of conditional expectation and Fubini’s theorem we have:

E[G(S)] = E

[
sup

w∈W

(
1
n

n∑
i=1

R(w) − ℓ(w, zi)
)]

= E

[
sup

w∈W

1
n

n∑
i=1

E[ℓ(w, z̃i) − ℓ(w, zi)|S̃]
]

≤ E

[
E

[
sup

w∈W

1
n

n∑
i=1

(ℓ(w, z̃i) − ℓ(w, zi))
∣∣∣∣S̃]]

= E

[
sup

w∈W

1
n

n∑
i=1

(ℓ(w, z̃i) − ℓ(w, zi))
]

= E

[
sup

w∈W

1
n

n∑
i=1

σi(ℓ(w, zi) − ℓ(w, z̃i))
]

≤ 2E
[

sup
w∈W

1
n

n∑
i=1

σiℓ(w, zi)
]

= 2E[Rad(ℓ(W, S))].

(11)

On the other hand if we denote Si = (z1, . . . , zi−1, z̃i, zi+1, . . . zn) we have that:

|G(S) − G(Si)| ≤ 2B
n
,

And therefore by Mc-Diarmid inequality for any ϵ > 0:

P

(
G(S) − E[G(S)] ≥ ϵ

)
≤ exp

{
− nϵ2

2B2

}
.
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By taking any η ∈ (0, 1) we can make a clever choice for ϵ and deduce that with probability at least
1 − η we have:

G(S) ≤ E[G(S)] +
√

2B2

n
log(1/η). (12)

Moreover we can also write:

|Rad(ℓ(W, S)) − Rad(ℓ(W, Si))| ≤ Eσ

[
sup

w∈W

1
n

∣∣σi(ℓ(w, zi) − ℓ(w, z̃i))
∣∣] ≤ 2B

n
,

so that by Mc-Diarmid and the exact same reasoning than above we have that with probability at
least 1 − η:

E[Rad(ℓ(W, S))] ≤ Rad(ℓ(W, S)) +
√

2B2

n
log(1/η). (13)

Therefore combining equations 11, 12 and 13 gives us that with probability at least 1 − 2η:

G(S) ≤ 2Rad(ℓ(W, S)) + 3
√

2B2

n
log(1/η).

Now that we can efficiently bound the generalization error by a term involving the Rademacher
complexity, the natural question arises, of whether we are able to bound the Rademacher complexity
itself. It appears that, thanks to our bounded loss assumption, a result may be obtained in the case of
finite hypothesis sets. This is a consequence of the following concentration lemma:

Proposition 3 (Massart’s lemma, (Massart, 2000)). Let T ⊆ Rn be a finite set, then:

Rad(T ) ≤ max
t∈T

(∥t∥2)
√

2 log(|T |)
n

.

Proof. Let us take λ > 0, σ = (σ1, . . . , σn) some Rademacher random variables and denote M :=
maxt∈T (∥t∥2), we have

exp(nλRad(T )) ≤ Eσ

[
exp

(
max
t∈T

λ

n∑
i=1

σiti

)]
(Jensen’s inequality)

≤
∑
t∈T

Eσ

[
exp

(
λ

n∑
i=1

σiti

)]

≤
∑
t∈T

n∏
i=1
Eσi

[eλσiti ], (Independence and Fubini’s theorem)

≤
∑
t∈T

n∏
i=1

exp
{
λ2t2i

2

}
Hoeffding’s lemma

≤
∑
t∈T

exp
{
λ2

2

n∑
i=1

t2i

}
≤ |T | exp

{
λ2M2

2

}
.

And therefore:
Rad(T ) ≤ log(|T |)

λn
+ λ

M2

2n .

The minimum of the function λ 7→ a/λ + bλ being reached for λ =
√
a/b, we immediately get the

result:
Rad(T ) ≤ M

√
2 log(|T |)
n

.
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Example 5. Let’s get back to a setting with a finite hypothesis set W, as in Example 4. In that case
we have that maxw∈W(∥(ℓ(w, zi))i∥2) ≤ B

√
n, thanks to the boundedness assumption. Thus Massart’s

lemma 3 gives us

Rad(ℓ(W, S)) ≤ B

√
2 log(|W|)

n
. (14)

This result is classically involved in a more general covering argument applying to a more general
hypothesis set W. We will present and extend this argument to get our first result in Section 4.

2.3 Information theoretic quantities
Recently, one popular approach to prove generalization bounds has been based on information theory. In
this context, Xu and Raginsky (2017); Russo and Zou (2019) proved particularly interesting generalization
bounds in terms of the mutual information between input and output of the model. Other authors refined
this argument in various settings (Pensia et al., 2018; Negrea et al., 2019; Steinke and Zakynthinou, 2020;
Harutyunyan et al., 2021) while Asadi et al. (2019) combined mutual information and chaining to tighten
the bounds.

In our work we will use the total mutual information to specify the dependence between the data
and the fractal properties of the hypothesis set.

2.3.1 Mutual information and decoupling

Let us first recall some basics concepts of information theory, the reader may consult (van Erven and
Harremoës, 2014) for more details on those notions. The following definition introduces Kullback-Leibler
(KL) and Renyi divergences, which are the basic building blocks of the aforementioned approaches. The
absolute continuity of one probability measure with respect to another will be denoted by ≪.

Definition 4 (Kullback-Leibler and Renyi divergences). Let us consider a probability space (Ω,F) and
two probability distributions π and ρ, with π ≪ ρ. We define the Kullback-Leibler divergence of those
distributions as:

KL(π||ρ) =
∫

log
(

dπ
dρ

)
dπ.

For α > 1, we define their α-Renyi divergence as:

Dα(π||ρ) = 1
α− 1 log

∫ (
dπ
dρ

)α

dρ.

We set those two quantities to +∞ if the absolute continuity condition is not verified.

Note that by convention we often consider that D1 = KL and that Renyi divergences may also be
defined for orders α < 1 (van Erven and Harremoës, 2014), but we won’t need it here.

It is easy to prove that Dα is increasing in α and it is therefore natural to define:

D∞(π||ρ) = lim
α→0

Dα(π||ρ).

Intuitively, those divergences ma be interpreted as distances over probability distributions. As it
is well known, for two random variables X and Y , that X and Y are independent if and only if their
joint law satisfies PX,Y = PX ⊗ PY , it is natural to further measure the statistical dependence between
X and Y by computing the divergences between those two distributions.

Definition 5 (Mutual information). Let X,Y be two random variables on Ω, we define for α ∈ [1,∞]:

Iα(X,Y ) := Dα(PX,Y ||PX ⊗ PY ),

with in particular:
I(X,Y ) := I1(X,Y ) = KL(PX,Y ||PX ⊗ PY ).

I∞ will be called the total mutual information.

One of the main properties of those notions of mutual information, which we shall use intensively in
Section 5.3, is to satisfy the so-called data processing inequality, which we state in the following theorem.
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Theorem 2.3. Data processing inequalities

Given a probability space (Ω,F), G a sub-σ-algebra of F and π, ρ two probability distributions,
one has:

Dα(π|G ||ρ|G) ≤ Dα(π||ρ).

If X −→ Y −→ Z is a Markov chain, then one has the data processing inequality for mutual
information, for any α ∈ [1,+∞]: Iα(X,Z) ≤ Iα(X,Y ).

Theorem 2.3.1 implies that if the conditional distribution of a random variable Z with respect to
(X,Y ) is independent of X, then Z and X ‘share less information’ than X and Y . See (van Erven and
Harremoës, 2014) for a proof of this result.

Our particular interest in those quantities resides in their decoupling properties. In particular
Hodgkinson et al. (2022) used the following proposition in their generalization bounds and introduce
a mutual information term between the data and the hypothesis set, an approach from which we take
inspiration in our work, which would correspond to I∞(S,WS,U ) in our notations.

Proposition 4 (Decoupling in probability, lemma 1 in (Hodgkinson et al., 2022)). Let (Ω,F ,P) be
a probability space and X,Y be two random variables with values in two measurable spaces (ΩX ,FX),
(ΩY ,FY ), then for each B ∈ FX ⊗ FY we have:

PX,Y (B) ≤ eI∞(X,Y )PX ⊗ PY (B).

Our proof follows the same idea than (Hodgkinson et al., 2022), perhaps in a more precise way.

Proof. Let B(p) denote the Bernoulli distribution with parameter p. Let us consider G = σ({B}) the
sub σ-algebra of FX ⊗ FY generated by B.
It is clear that PX,Y |G induces the same distribution than B(PX,Y (B)), and similarly for PX ⊗PY |G
and B(PX ⊗ PY (B)).
Therefore, for any α > 1 we have by the data-processing inequality:

Dα(B(PX,Y (B))||B(PX ⊗ PY (B))) ≤ Iα(X,Y ) ≤ I∞(X,Y ).

Given a, b ∈ (0, 1) we can compute analytically the divergence as:

Dα(B(a),B(b)) = 1
α− 1 log

∫ (
dB(a)
dB(b)

)α

dB(b)

= 1
α− 1 log

(
b
(a
b

)α + (1 − b)
(1 − a

1 − b

)α
)

−→
α→∞

log max
{a
b
,

1 − a

1 − b

}
≥ log

(a
b

)
.

Hence the result if PX,Y (B),PX ⊗ PY (B) ∈ (0, 1).
If PX,Y (B) = 0 then the result is obvious.
If PX,Y (B) = 1 and PX ⊗ PY (B) > 0, then we do the same computation but we notice that the
Radon-Nykodym derivative in the integral is dB(1)

dB(b) (x) = 1
b11(x) on {0, 1}.

The last case is when PX,Y (B) = 1 and PX ⊗PY (B) = 0. In that case we note that the total mutual
information is infinite.

We actually have an even stronger result (van Erven and Harremoës, 2014, Theorem 6):
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Theorem 2.4. Total divergence as an essential supremum

With the same notations we have:

D∞(π||ρ) = log
(

sup
B∈F

π(B)
ρ(B)

)
.

We see that Proposition 4 is an immediate corollary of Theorem 2.4.

2.3.2 Digression: a mutual information bound

In this subsection, we quickly present a decoupling method, based on mutual information between the
input of a learning algorithm and its output, leading to a famous generalization bound from Xu and
Raginsky (2017). Our goal is to be able to discuss the comparison between the mutual information terms
appearing in our bounds (see Section 5) and the one more classically appearing in the literature.

The aforementioned decoupling technique is based on the celebrated Donsker-Varadhan’s formula,
see (Boucheron et al., 2013), which is also known for its use in PAC-Bayesian generalization bounds.

Proposition 5 (Donsker-Varadhan’s formula). Let π, ρ be two probability measures on some probability
space, with π ≪ ρ, we have the following variational formulation of the KL divergence:

KL(π||ρ) = sup
f

( ∫
fdπ − log

∫
ef dρ

)
,

where the supremum is taken over measurable functions such that Eρ[ef ] < +∞.

Proof. Let us consider a probability measure ν equivalent to ρ (i.e. ν ≪ ρ and ρ ≪ ν), then by the
chain rules of Radon-Nykodym derivatives we have

KL(π||ρ) = KL(π||ν) +
∫

log
(

dν
dρ

)
dπ

≥
∫

log
(

dν
dρ

)
dπ.

As ν is equivalent to ρ, it has almost everywhere the form dν
dρ = Cef , where f is some measurable

function. In order for ν to be a probability measure we must have C−1 = Eρ[ef ]. Therefore we obtain:

KL(π||ρ) ≥
∫
fdπ − log

∫
ef dρ.

Now just note that equality in Proposition 5 is obtained when KL(π||ν) = 0, which leads to dπ
dρ =

ef

Eρ[ef ] .

This allows us to prove a first decoupling result, which is a very powerful tool widely used in
the generalization literature to relate the generalization error of a learning algorithm to the mutual
information between its inputs and outputs (see (Xu and Raginsky, 2017), (Negrea et al., 2019), (Pensia
et al., 2018), (Russo and Zou, 2019)).

Proposition 6 (Lemma 1 in (Xu and Raginsky, 2017)). Let X,Y be two random variables and f(., .)
a measurable function. We consider X̄ and Ȳ two copies of X and Y which are independent. Then if
f(X̄, Ȳ ) − E[f(X̄, Ȳ )] is σ2-subGaussian, we have:

|E[f(X,Y )] − E[f(X̄, Ȳ )]| ≤
√

2σ2I(X,Y ).

Proof. By independence we have PX,Y = PX̄ ⊗ PȲ . Therefore, applying proposition 5 we can write,
for every λ ∈ R:

I(X,Y ) = KL(PX,Y ||PX ⊗ PY )

≥ λEX,Y [f(X,Y )] − logEX̄,Ȳ [eλf(X̄,Ȳ )].
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Now using the subGaussian property we get:

I(X,Y ) ≥ λEX,Y [f(X,Y )] − λEX̄,Ȳ [f(X̄, Ȳ )] − logEX̄,Ȳ

[
eλf(X̄,Ȳ )−λE[f(X̄,Ȳ )]

]
≥ λEX,Y [f(X,Y )] − λEX̄,Ȳ [f(X̄, Ȳ )] − λ2σ

2

2 .

Which gives us a second order polynomial equation whose discriminant must be ∆ ≤ 0. Thus:(
EX,Y [f(X,Y )] − EX̄,Ȳ [f(X̄, Ȳ )]

)2 − 2σ2I(X,Y )2 ≤ 0,

Which gives us the result.

Example 6. Let us consider the learning algorithm as taking as input a random dataset S and outputs
a random variable W , corresponding to the trained parameters (so that W depends on S in general). If
the loss is assumed to be σ2 subGaussian, then the above result immediately gives us a bound on the
expected generalization error:

|E[R(W ) − R̂S(W )]| ≤
√

2σ2

n
I(S,W ). (15)

This is a well-known result (Xu and Raginsky, 2017, Theorem 1).

We end this section by making a remark to assess the differences between this classical mutual
information bound and the mutual information terms appearing in our work, as well as previous works.
The existence of those kind of bounds may shed more light on the more technical mutual information
terms that we will introduce in Sections 4 and 5.

Remark 2. In previous works proving fractal based generalization bounds (Şimşekli et al., 2021; Hodgkinson
et al., 2022) and informally summarized by Equation 4, one can see more complex total mutual information
terms appearing, namely terms of the form2 I∞(S,WS,U ), where WS,U is a (random) closed set as defined
by learning algorithm (5). What can actually make the latter smaller than a mutual information between
the data S and the output of the learning algorithm, as in Equation (15), is that, in WS,U , no temporal
information is contained, we just consider it as a geometric set. Here is a thought experiment to better
grasp this behavior: consider a learning algorithm whose trajectory is supported on the unit sphere S1 of
R2, such that it is continuous and always perform at least one full revolution. In that case WS,U always
correspond to S1 and therefore convey no information about the data, i.e. I∞(S,WS,U ) = 0, while the
last point of the trajectory (the output of the learning algorithm) clearly contains information about the
data.

2Actually in (Şimşekli et al., 2021), the total mutual information is computed between the data and the ‘coverings’, we
simplified the presentation in this remark. The notion of random closed set giving meaning to all of this will be studied in
Section 5.1.
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3 Fractal geometry
The notion of fractal, as originally conceived by Mandelbrot (1982), refers to utterly complicated geometric
objects which exhibit similar behavior at any scale. One of the most striking property of those objects
is that some natural extensions of the notion of dimension may induce non-integer dimensions. The
rigorous study of this dimension theories is the main purpose of fractal geometry, from which a detailed
introduction can be found in (Falconer, 2014).

Dimension theory has been a successful tool to analyze dynamical systems (Pesin, 1997) and
stochastic processes (Xiao, 2004). More recently, several works have used these notions in the context of
generalization (Şimşekli et al., 2021; Adams et al., 2020; Birdal et al., 2021; Hodgkinson et al., 2022). In
this section we will introduce some basic concepts of fractal geometry and explain how those tools can
be related to generalization theory, an idea which we aim to extend in our work.

3.1 Dimension theory
3.1.1 Box-counting dimensions

Let us fix some complete Hausdorff metric space (X, d) (we consider in this subsection that X = RN for
some N ∈ N+) and a compactly contained set F ⊆ X. For any δ > 0, we will define a δ-cover as being a
set Nd

δ (F ) ⊆ F of the centers of closed δ-balls covering F , namely:

F ⊂
⋃

x∈Nd
δ

(F )

B̄d
δ (x), (16)

where the closed balls are denoted by B̄d
δ (x) = {y ∈ X, d(x, y) ≤ δ}. A δ-cover will be called

minimal if |Nd
δ | is minimal. We define the covering numbers, denoted |Nd

δ | to be the cardinal of a minimal
cover. In all this subsection we assume that the set F ⊆ X admits finite covers for all δ. When we apply
those notions to statistical learning theory we will explain why this is indeed the case.

Remark 3. As this work is interested in the fractal behavior of an hypothesis set WS,U , defined by
Equation (5), under different metrics, we explicit the dependence of the covers on the metric. It will be
omitted when the metric is obvious (e.g. Euclidean).

Remark 4. Our definition of covering requires the centers of a covering of a set F to be in F . This
will simplify our proofs and does not change the values of the box-counting dimensions defined from
those covering numbers. It also introduces a few minor technical complications which are discussed in
Sections 4 and 5. Those complications are solved by the following fact, immediate consequence of the
triangle inequality if G ⊆ F , then we have |N2δ(G)| ≤ |Nδ(F )|.

One of the most basic notion of dimension, called box-counting dimension or sometimes Minkowski’s
dimension is based on the observation that for simple geometric objects, the covering numbers scale with
δ roughly as C.δ− dim(F ), which leads to the following definitions.

Definition 6 (Box-counting dimensions). Consider a bounded set F ⊂ X, we define respectively the
upper and lower box-counting dimensions as:

dimd

B(F ) := lim sup
δ→0

log |Nd
δ (F )|

log(1/δ) , dimd
B(F ) := lim inf

δ→0

log |Nd
δ (F )|

log(1/δ) .

When the above limits are equal, their value will be called the box-counting dimension (or Minkowski
dimension):

dimd
B(F ) = lim

δ→0

log |Nd
δ (F )|

log(1/δ) .

In particular, our main results will be stated in terms of the upper-box counting dimension WS,U ,
therefore denoted dimB(WS,U ) which is our main object of interest. However, other authors pointed out
that under some regularity conditions the latter can be equal to some other fractal dimensions, namely the
well-known Hausdorff dimension (Şimşekli et al., 2021; Hodgkinson et al., 2022), which we will describe
briefly.
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Remark 5. As highlighted in (Falconer, 2014, Definition 2.1), we could equivalently define box-counting
dimensions by using instead of closed balls the sets of diameters at most δ, moreover other equivalent
definitions exist. Here we restrict ourselves to closed balls to ease notations and future proofs.

One of the most important feature of the above dimensions is their behavior with respect to Hölder
mappings:

Proposition 7 (Dimension and Hölder functional). Let (Y, ρ) be another metric space and f : X −→ Y
and α-Hölder continuous map with α > 0. Then, for F ⊂ X we have:

dimρ

B(f(F )) ≤ 1
α

dimd

B(F ), and: dimρ
B(f(F )) ≤ 1

α
dimd

B(F ).

Proof. Let us consider a minimal δ-cover of F , then we have f(F ) ⊂
⋃

x∈Nd
δ

(F ) f(B̄δ(x)). By Hölder
continuity we can write that for any x ∈ Nd

δ (F ) and x′ ∈ B̄δ(x) we have ρ(f(x), f(x′)) ≤ d(x, x′)α.
Therefore

f(F ) ⊂
⋃

x∈Nd
δ

(F )

f(B̄δα(f(x))),

which leads to:
log |Nρ

δα(f(F ))|
log(1/δα) ≤ 1

α

log |Nd
δ (F )|

log(1/δ) ,

hence the result.
Example 7. Let us consider a standard Brownian Motion (Bt)t∈[0,1] inRm withm ≥ 2. As a consequence
of Kolmogorov continuity theorem, it is known that t 7→ Bt is almost surely α-Hölder continuous for all
α ∈ (0, 1/2). As a consequence of proposition 7 and taking the limit α → 1/2 we get that

dimB({Bt, t ∈ [0, 1]}) ≤ 2. (17)

Equation (17) shows that some stochastic processes may exhibit low fractal dimensions, which do not
scale with the dimension of the ambient space. This phenomenon has been widely studied Xiao (2004) and
is an argument in favor of the fractal based generalization theory developed in previous works (Şimşekli
et al., 2021) and described by Equation (4).

Let us finish this subsection by stating a few properties of box-counting dimensions which will be
useful in further sections.

Proposition 8. Let F be a set admitting finite δ-covers for d for all δ > 0, as assumed earlier. We have
the following properties:

i Finite stability for the upper box-counting dimension: If we write F as any finite union
F =

⋃m
i=1 Fi, we have

dimB(F ) = max
1≤i≤m

dimB(Fi).

ii Closure stability: Lower and upper box-counting dimensions are stable by closure, namely:

dimB(F̄ ) = dimB(F ), and: dimB(F̄ ) = dimB(F ).

iii Euclidean bound: If the metric space is the Euclidean space RD, endowed with the usual Euclidean
distance, and F is bounded, then we have

0 ≤ dimB(F ) ≤ dimB(F ) ≤ D.

Proof. Finite stability: Consider F =
⋃m

i=1 Fi, then by the previous points it is obvious that
∀i ∈ {1, . . . ,m}, dimd

B(Fi) ≤ dimd

B(F ) and therefore max1≤i≤m dimd

B(Fi) ≤ dimd

B(F ).
Now if δ > 0 and N i

δ is a δ-cover of Fi. Let d̄ := max1≤i≤m dimd

B(Fi) ≤ dimd

B(F ) and ϵ > 0. By
definition of the upper-limit and as we have a finite number of sets, there exists δ0 > 0 such that for
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all 0 < δ < δ0 we have:
∀i, |N i

δ| ≤
(1
δ

)d̄+ϵ

Therefore, as
⋃

i N
i
δ is a δ-cover of F for 0 < δ < δ0:

log(|Nδ|)
log(1/δ) ≤ log(|N1

δ | + · · · + |Nm
δ |)

log(1/δ) ≤ log(max1≤i≤m |N i
δ|)

log(1/δ) + log(m)
log(1/δ) ≤ d̄+ ϵ+ log(m)

log(1/δ)

As m is finite and ϵ is arbitrary, we get the inequality.
Closure stability: By the fact that we consider coverings by closed balls, a δ-cover of F is also a
covering of its closure. Conversely, by Remark 4 we have |N2δ(F )| ≤ |Nδ(F̄ )|. The result follows by
taking upper and lower limits.
Euclidean bound: We use in that case an equivalent definition of the box-counting dimensions given
in (Falconer, 2014, Definition 2.1) which is that we can use cubes of edge size δ. We get the result by
noting that, as F is bounded, it is included in a cube of edge size B for some B > 0, which can be
covered by ⌈(B/δ)D⌉. Taking the logarithm gives the inequality.

Remark 6. The closure stability property of box-counting dimension, displayed in Proposition 8, may
be seen as a justification of our choice that the learning algorithm (5) generates closed hypothesis sets.
Indeed, if that were not the case we could modify it by composing it with the closure operation, as we are
interested in the quantity dimB(WS,U ), this would not make us loose any generality.

3.1.2 Hausdorff dimension

The main drawback of the box-counting dimension is that there is no measure associated to it, so it
tells us about the dimension of objects and not their size. The concept of Hausdorff dimension aims at
defining a notion of dimension based on a generalization of the Lebesgue measure. Even though Hausdorff
dimension is not our main object of interest, we mention it to relate our approach to previous works and
describe how it could help improve the presented results.

Given F ⊂ X, s ≥ 0 and δ > 0 we define:

Hs
δ(F ) := inf

{ +∞∑
i=1

diam(Ui)s, F ⊂
⋃

i

Ui, diam(Ui) ≤ δ

}
, (18)

where diam(Ui) denotes the diameter of Ui. It is obvious from the definition that Hs
· is decreasing in δ

and therefore it makes sense to define:

Definition 7 (Hausdorff Measure). With the same notations as above, we define the Hausdorff measure
of F as:

Hs(F ) := lim
δ→0

Hs
δ(F ).

It may be proven that Hs(·) indeed defines a measure on the Borel σ-algebra of X, under mild conditions
which hold for Rn, see (Pesin, 1997, Section 1.1) or (Falconer, 2014, Section 3.1).

It can be shown that, up to a proportionality factor, Hs corresponds to the s-dimensional Lebesgue
measure of Rm.

Using an argument from (Falconer, 2014), we see that if for some s we have Hs(F ) < ∞ then for
any s′ > s, taking a δ-cover (Ui) we get:∑

i

diam(Ui)s′
≤ δs′−s

∑
i

diam(Ui)s.

Then, by taking infimum over the covers and letting δ → 0 we have Hs′(F ) = 0. Therefore there exists
a critical value of s for which the graph of s 7−→ Hs(F ) transitions from ∞ to 0. This motivates the
following definition:

Definition 8 (Hausdorff dimension). The critical value inf s ≥ 0, Hs(F ) = 0 is called the Hausdorff
dimension of F and will be denoted dimd

H(F ). If in addition this value is in (0,+∞), F will be called a
s-set.
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Example 8. Let (Xt)t∈[0,1] be a Markov process in Rd with transition function P (t, x,A). One can
prove (Xiao, 2004, Theorem 4.2) that under some regularity conditions we have Px-almost surely that

dimB({Xt, t ∈ [0, 1]}) = sup
{
α ≥ 0, lim sup

r→0

1
rα

∫ 1

0
P (0, t, B(0, r))dt < +∞

}
. (19)

Equation (19) gives a generic formula for the Hausdorff dimension of stochastic processes whose ‘range’
{Xt, t ∈ [0, 1]} can correspond to many learning algorithms described in Section 1.1. A wide literature
study improvements of Equation (19), especially in the case of stochastic dynamics as described in
Example 1, which is one of the key tools of earlier works relating generalization of learning algorithms to
their fractal behavior (Şimşekli et al., 2021).

Hausdorff dimension has the same behavior with respect to Hölder mappings as described in
Proposition 7, however it is not stable by closure, which in particular implies that it cannot always
coincide with the box-counting dimension3. Another notable difference between both notion is the resides
in the following property of local stability:

Proposition 9 (Local stability of Hausdorff dimension). Let (Fi)i∈I be a countable collection of sets, we
have:

dimH

( ⋃
i∈I

Fi

)
= sup

i∈I
{dimH(Fi)}.

While in general box-counting and Hausdorff dimensions are not equal, but we have the following
inequalities (Falconer, 2014, Proposition 3.4):

dimH(·) ≤ dimB(·) ≤ dimB(·). (20)

Finally, we end our discussion of dimension theory by stating under which regularity condition the
Hausdorff dimension and the box-counting dimension coincide.

Proposition 10 (Mattila (1999, Theorem 5.7)). Let F ⊂ Rd be a bounded set and assume there exists
a finite measure µ on the Borel σ-algebra of Rd such that µ(F ) > 0 as well as a, b, s, r0 > 0 such that:

∀x ∈ F, ∀0 < r ≤ r0, 0 < ars ≤ µ
(
B(x, r)

)
≤ brs < +∞.

Then both dimension are equal and the box-counting dimension is defined: dimB(F ) = dimH(F ).

The intuition behind this result is that if there exists a measure on a set such that the volume of
balls scale as rs with the radius r of the ball, the ‘dimension’ of the set must be s.

The kind of regularity conditions described in Proposition 10 is used in previous works (Şimşekli
et al., 2021; Camuto et al., 2021; Hodgkinson et al., 2022) to assert that their bounds relating generalization
error to the upper-box counting dimension of the hypothesis set WS,U can be modified with its Hausdorff
dimension, which has better properties. In this work we chose to not make any of those regularity
assumptions, however this may open a future research direction.

3.2 Previous fractal-based generalization bounds
Now that we have quickly described the main tools of fractal geometry that we need, this subsection is
devoted to describe how it was used in previous works to relate it to generalization error.

Motivation: This idea initially comes from the work of Şimşekli et al. (2021), who was in particular
interested in modeling the behavior of stochastic optimization algorithm (e.g. stochastic gradient descent)
with heavy tailed dynamics of the form:

dWt = −∇f(Wt)dt+ Σ1(Wt)dBt + Σ2(Wt)dLα
t , (21)

where Wt represents the parameters of the model, Bt is a Brownian motion and Lα
t is a ‘stable

Levy process’ (Schilling, 2016). The precise study of such dynamics is beyond the scope of this project,
however, it connects statistical learning theory to the widely studied fractal behavior of such models. In
particular, it is shown in (Schilling, 1998, Theorem 4) that the Hausdorff dimension in that case may be
expressed in terms of the tail properties of the process, which may also be numerically computed.

3Consider for example the set Q ∩ [0, 1] which has upper box-counting dimension 1 but Hausdorff dimension 0.
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Remark 7. Note that by considering WS,U = {Wt, t ∈ [0, T ]}, the model described by Equation (21)
falls into the scope of the learning algorithm formalized in Section 1.1.

We will now explain how worst-case generalization error may be related to the fractal dimensions
induced by the Euclidean distance on the hypothesis set. Let us first consider the particular case on a
fixed hypothesis set, denoted W and being a closed set in Rd. The remaining of the setting and notations
are exactly the same than in Section 1.

The intuition is the following: given two points w,w′ ∈ W and S ∈ Zn, one can always write the
following decomposition:

|R(w) − R̂S(w)| ≤ |R(w′) − R̂S(w′)| + |R(w) − R(w′)| + |R̂S(w) − R̂S(w′)|. (22)
Now, if we take w,w′ to be in the same small ball in Rd, a regularity on ℓ (e.g. Lipschitz continuity)
would allow us to bound the last two terms of Equation (22) while the first term could be handled with
concentration inequalities. This is the idea of the proof of the following theorem, first proven by Şimşekli
et al. (2021) and which is the first result linking generalization and fractal geometry, it is here stated and
proven within our notations.

Theorem 3.1. Euclidean fractal generalization bound for fixed hypothesis sets

We assume that the loss (w, z) 7→ ℓ(w, z) is uniformly bounded by B (|ℓ| ≤ B) and is L-Lipschitz
continuous in w uniformly with respect to z, with B,L > 0. Moreover we make the assumption
that W is bounded.
Then, for all ζ ∈ (0, 1), with probability at least 1 − ζ over µ⊗n

z , there exists N ∈ N+ such that
for all n ≥ N we have

sup
w∈W

|R(w) − R̂S(w)| ≤ 2√
n

+B

√
2dimB(W) log(nL2) + 2 log(1/ζ)

n
. (23)

Proof. Let us fix some δ > 0 and consider Nδ a minimal cover of W ⊂ Rd for the Euclidean distance.
let’s recall that in Section 3.1 we have defined such a cover as a minimal set of centers of closed δ-balls
covering W.
Now let us take any w ∈ W, then by definition of the coverings, there exists w′ ∈ Nδ such that
∥w − w′∥ ≤ δ.
For any S ∈ Zn, we note that, by linearity, the functions R(·) and R̂S(·) are L-Lipschitz continuous.
Therefore we can rewrite the decomposition of Equation (22) as:

|R(w) − R̂S(w)| ≤ |R(w′) − R̂S(w′)| + |R(w) − R(w′)| + |R̂S(w) − R̂S(w′)|
≤ |R(w′) − R̂S(w′)| + 2Lδ.

Therefore we have
sup

w∈W
|R(w) − R̂S(w)| ≤ 2Lδ + max

w∈Nδ

|R(w) − R̂S(w)|. (24)

We can bound the first term of the right hand side of (24) by leveraging a union bound and Hoeffding’s
inequality; for any ϵ > 0, we have:

µ⊗n
z

(
max
w∈Nδ

|R(w) − R̂S(w)| ≥ ϵ

)
= µ⊗n

z

( ⋃
w∈Nδ

{∣∣Ez[ℓ(w, z)] − 1
n

n∑
i=1

ℓ(w, zi)
∣∣ ≥ ϵ

})

≤
∑

w∈Nδ

µ⊗n
z

({∣∣Ez[ℓ(w, z)] − 1
n

n∑
i=1

ℓ(w, zi)
∣∣ ≥ ϵ

})

≤ 2
∑

w∈Nδ

exp
{

− 2ϵ2
n(B/n)2

}

= 2|Nδ| exp
{

− nϵ2

2B2

}
.

(25)
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Now let ζ ∈ (0, 1), as we want a result true with probability at least 1 − ζ, we make the following
choice for ϵ:

ϵ := B

√
2 log(2|Nδ|) + 2 log(1/ζ)

n
, (26)

so that

µ⊗n
z

(
max
w∈Nδ

|R(w) − R̂S(w)| ≥ B

√
2 log(2|Nδ|) + 2 log(1/ζ)

n

)
≤ ζ.

Now, using Definition 6 we have

dimB(W) = lim sup
δ→0

log(|Nδ|)
log(1/δ) = lim sup

δ→0

log(2|Nδ|)
log(1/δ) ,

where the Euclidean metric is omitted in the notation of dimB .
Let us consider a sequence δn = 1/

√
nL2, as dimB(W) is a constant, we have by definition of the

upper limit that there exists N ∈ N+ such that:

∀n ≥ N, log(2|Nδn
|) ≤ 2dimB(W) log(1/δn) = dimB(W) log(nL2).

Therefore, for all n ≥ N we have

µ⊗n
z

(
sup

w∈W
|R(w) − R̂S(w)| ≥ 2√

n
+B

√
2dimB(W) log(nL2) + 2 log(1/ζ)

n

)
≤ ζ,

which directly implies the result.

Remark 8. Instead of the bounded loss assumption in Theorem 3.1, one could have assumed that (w, z) 7→
ℓ(w, z) is sub-Gaussian in z, uniformly with respect to w, in which case we would have used the general
Hoeffding’s inequality 2.1 and get the same result than equation (23) but with in place of B the parameter
Σ appearing in the third point of Proposition 1.

The result presented in Theorem 23 is not satisfying enough because it does not take into account
the general case of a random hypothesis WS,U set generated by (5). As U is independent of S and plays
no role in the concentration inequalities used in the proof above, only the dependence of WS,U on S has
to be handled. There are two possible solutions for this:

1. Define a notion of uniform dimension over the possible realization of the hypothesis sets, such as

sup
S∈Zn

dimB(WS,U ). (27)

2. Directly get a bound in terms of the (random) dimension dimB(WS,U ).

The second solution is obviously better as it conveys more information about the data S and is a
tighter bound. In our results (see Sections 4 and 5) we will try to achieve this kind of results for another
type of fractal dimension. However, Şimşekli et al. (2021) also propose the following corollary for the first
solution. It is worth mentioning because, as the upper-box counting dimension is only finitely stable, in
order to for the quantity (27) to appear we need the upper box-counting dimension to be equal to the
Hausdorff dimension (or any other locally stable dimension), hence requiring regularity assumptions on
W, as in the following result.

Corollary 2. We assume that ℓ is bounded by B and L-Lipschitz continuous as in Theorem 3.1 and
further assume that Z is countable, WS,U is uniformly bounded and that

⋃
S∈Zn WS,U satisfies the

assumptions of Proposition 10.
Then there exists N ∈ N+ such that with probability at least 1 − ζ over µ⊗n

z ⊗ µu, for all n ≥ N
we have:

sup
w∈WS,U

≤ 2√
n

+B

√
2 supS∈Zn dimH(WS,U ) log(nL2) + 2 log(1/ζ)

n
.
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Proof. We simply write:

sup
w∈WS,U

|R(w) − R̂S(w)| ≤ sup
w∈

⋃
S∈Zn WS,U

|R(w) − R̂S(w)|.

As U is independent of S, we can apply Theorem 3.1 along with Proposition 10 for almost any U and
get that with probability 1 over U and 1 − ζ over S, for n big enough:

sup
w∈WS,U

≤ 2√
n

+B

√√√√√2dimB

( ⋃
S∈Zn WS,U

)
log(nL2) + 2 log(1/ζ)

n

≤ 2√
n

+B

√√√√√2 dimH

( ⋃
S∈Zn WS,U

)
log(nL2) + 2 log(1/ζ)

n

≤ 2√
n

+B

√
2 supS∈Zn dimH(WS,U ) log(nL2) + 2 log(1/ζ)

n
.

Remark 9. The assumption that WS,U is uniformly bounded is actually not necessary and can be relaxed
via an an argument based on the dominated convergence theorem, see (Şimşekli et al., 2021, Section 6.2).

Several works attempted to get results similar to the second proposed solution (get ‘pointwise’
bounds directly in terms of dimB(WS,U )) in different settings (Şimşekli et al., 2021; Camuto et al., 2021;
Hodgkinson et al., 2022). The main message here is that to achieve such a bound, one need to deal with
the statistical dependence between the data S and the random hypothesis sets WS,U . Using decoupling
technique similar to those presented in Section 2.3, those authors where able to generalize Theorem 3.1
to the case of random hypothesis sets at the cost of introducing mixing or mutual information terms,
leading (informally) to results stated by Equation (4).
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4 From Rademacher complexity to a data-dependent intrinsic
dimension

In Section 3.2 we explain how previous works combined concentration inequalities and fractal geometry
to get generalization bounds involving the fractal dimensions of the hypothesis set WS,U , but those works
are not satisfying enough because of the Lipschitz assumption and the lack of data-dependence of the
introduced dimensions.

In this section, we will start putting together the tools described in Sections 2.1 and 3 to prove
generalization bounds involving another type of dimension. First we explain how a classical covering
argument on Rademacher complexity leads to the definition of a data-dependent pseudo-metric on the
parameter space. We then quickly study the behavior of the box-counting dimensions induced by this
pseudo-metrics before proving a generalization bound for fix hypothesis sets involving this data-dependent
dimension.

We do not make any Lipschitz continuity assumption. However, from now on we make Assumption
1, namely ℓ(·, ·) is continuous and uniformly bounded by B > 0.

4.1 What type of pseudo-metric can we use?
As we already mentioned, our goal is to introduce the upper box-counting dimension induced by a data-
dependent metric on the parameter space. A natural question arises of what type of metric could be
pertinent.

Looking at the kind of decomposition presented in Equation (22), one could think that using as a
distance (w,w′) 7→ |R(w) − R̂S(w) − R(w′) + R̂S(w′)| could work, as it allows to bound the terms that
were controlled by the Lipschitz assumption in the proof of Theorem 3.1. However, this would mean that
we aim to bound supw(R(w) − R̂S(w)) with the box-counting dimension induced by this pseudo-metric,
hence bounding the diameter of a set in terms of its dimension, which does not seem very meaningful.

Moreover we require the two following conditions on the pseudo-metric we choose:

1. The corresponding fractal dimensions must take non-trivial values ranging in a sufficiently large
interval, typically if we choose (w,w′) 7→ |R̂S(w) − R̂S(w′)| the dimension will always be smaller
than 1, because it would be the dimension of R̂S(Ws,U ).

2. We want it to be directly numerically estimable from the data S, i.e. we do not want any expectation
involved in the definition of the dimension.

Our choice of pseudo metric is inspired by a classical covering argument on Rademacher complexity
(Rebeschini, 2020); similar techniques are also used in a more general context related to concentration
inequalities (Boucheron et al., 2013, Section 13).

This covering argument is as follows, let us introduce the following random pseudo-metric:

∀S ∈ Zn, ∀w,w′ ∈ Rd, ρS(w,w′) := 1
n

n∑
i=1

|ℓ(w, zi) − ℓ(w′, zi)|. (28)

Now let us take S ∈ Zn, consider a fixed hypothesis set W and introduce a minimal δ-covering4,
denoted NρS

δ (W) in accordance with Section 3.1. We further introduce some Rademacher random
variables (σ1, . . . , σn) and take w′ ∈ NρS

δ (W) w ∈ B̄ρS

δ (w′), we have, by the triangle inequality:

1
n

n∑
i=1

σiℓ(w, zi) ≤ 1
n

n∑
i=1

σiℓ(w, zi) + ρS(w,w′) ≤ 1
n

n∑
i=1

σiℓ(w, zi) + δ.

Therefore:
Rad(ℓ(W, S)) := Eσ

[
sup

w∈W

1
n

n∑
i=1

σiℓ(w, zi)
]

≤ δ + Eσ

[
max

w∈N
ρS
δ

(W)

1
n

n∑
i=1

σiℓ(w, zi)
]
.

(29)

4Keep in mind that in Section 3 we defined the coverings Nd
δ (F ) as the set of centers of the balls covering F .
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From Equation (29) we make the following observations:

1. The last term of equation (29) is a Rademacher complexity over a finite set and can therefore be
handled using concentration techniques such as Massart’s Lemma 3.

2. This will make a random term of the form log(|NρS

δ (W)|) appear in the bound, thus we need to
make so that it is well defined and control the dependence on S of the limit defining the upper
box-counting dimension.

3. Most importantly, no Lipschitz continuity assumption is needed to make this argument work,
this is why, in the following, we will aim at extending this technique.

We will extend this covering argument in Section 4.3. Before coming to that, one should note that
we are now considering covering numbers in random pseudo-metric spaces, therefore we need to quickly
study the properties of the corresponding fractal dimensions.

4.2 Data-dependent fractal dimensions
In this subsection we study the properties of the fractal dimensions induced on subsets of Rd by the
pseudo-metrics ρS defined by Equation (28). We immediately see that with those distances it is indeed
possible to get ρS(w,w′) = 0 while w ̸= w′ (for example due to over-parameterization or the internal
symmetries of a neural network), so we need to extend the theory to this framework and prove some
properties which we will need afterwards.

This analysis also serves as a theoretical justification of our experimental work, presented in Section
6. Indeed, those experiments are based on results relating the upper box-counting dimension to topological
data analysis (Kozma et al., 2005; Schweinhart, 2019) in metric spaces, in order to extend prior works
(Adams et al., 2020; Birdal et al., 2021) to numerically estimate the fractal dimension. Thus, by extending
those results to pseudo-metric spaces we make possible the use of similar tools in our case.

Let us start by very simple remarks in generic pseudo-metric spaces.

Definition 9 (Pseudo-metrics and associated quantities). A pseudo-metric on set X, is an application
ρ : X×X −→ R+ which is null on the diagonal (ρ(x, x) = 0), symmetric and verify the triangle inequality.
The previous definition of box-counting dimensions are naturally extended to this setting, provided that
finite covering numbers are defined.

Let us quickly assert that the main properties of the box-counting dimensions remain true with
pseudo-metrics. Indeed, they do not use the fact that the metric actually separates distinct points.

Proposition 11 (Pseudo-metrics based box-counting dimension). Let F be a set admitting finite δ-covers
for d for all δ > 0. All statements of proposition 8 remain valid if d is a pseudo metric.

Actually, we will show that the properties of box-counting dimension on a pseudo-metric space can
actually be understood in terms of its metric identification.

Definition 10 (metric identification). Let (X, ρ) be a pseudo-metric space, we introduce the equivalence
relation:

∀x, y ∈ X, x ∼ y ⇐⇒ ρ(x, y) = 0.

We call metric identification of X the quotient of X by this equivalence relation. The canonical projection
on the quotient will be denoted as:

π : X −→ X/ ∼ .

Clearly, ρ induces a metric on X/ ∼ that we will denote ρ⋆ := π⋆ρ.

We prove that upper box-counting dimension invariant by this identification operation. Let us
recall that we always consider the covers are made from closed δ-balls, even though equivalent definitions
exist.

Lemma 2 (Upper-box dimension with pseudo metric). With the same notations as above, we have

dimB(X) = dimB(X/ ∼). (30)
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Proof. Let F ⊂ X, bounded. Let {x1, . . . , xn} be the centers of a closed δ-balls covering of F for
metric ρ. We have:

∀x, x′ ∈ B(xi, δ), ρ⋆(π(x), π(y′)) = ρ(x, x′) ≤ δ.

Therefore π(B(xi, δ)) ⊂ B(π(xi), δ), therefore Nρ
δ (F ) ≥ Nρ⋆

δ (π(F )).
On the other hand, if {y1, ..., yn} are the centers of a covering of F̄ ⊂ X/ ∼, a similar reasoning shows
that the π−1(B(yi, δ)) give a covering of π−1(F ) with (set included in) δ-balls.

Let us now note that pseudo-metric (28) may be written as ρS(w,w′) = ∥FS(w) −Fs(w′)∥1, where
FS is a random embedding defined for every S = (z1, . . . , zn) ∈ Zn:

FS : Rd ∋ w 7−→ 1
n

(ℓ(w, zi))1≤i≤n ∈ Rn. (31)

Therefore, it is worth studying the box-counting dimensions induced by pseudo-metrics having
this form, which we do in the following proposition, which states that those embedding preserve the
dimensions.

Proposition 12 (Covering numbers for embedding-based pseudo-metrics). Let n ≥ 1, X be some non
empty set and L : X −→ Rn be a function. Let us consider a norm ∥ · ∥ on Rn and denote by e the
corresponding metric.

We define on X the pseudo metric ρ(x, y) := ∥L(x) − L(y)∥. Then for every F ⊂ X such that
L(F ) is bounded, the covering numbers Nρ

δ (F ) and N∥·∥
δ (L(F )) are the same. In particular:

dimρ

B(F ) = dime

B(L(F )).

Proof. Let F be as in the proposition. All the coverings mentioned hereafter exist because L(F ) has
a compact closure in Rd.

• Let Nρ
δ be a closed δ-balls cover of F , then obviously:

L(F ) ⊂
⋃

x∈Nρ
δ

L(B̄ρ
δ (x)),

and for all x ∈ Nρ
δ and y, y′ ∈ L(B̄δρ(x)), there exist x, x′ ∈ X such that y = L(x) and

y′ = L(x′), therefore ∥y − y′∥ = ρ(x, x′) ≤ δ. Hence N∥·∥
δ (L(F )) ≤ Nρ

δ (F ).

• Let N∥·∥
δ be a closed δ-balls cover of L(F ), then clearly:

F ⊂
⋃

y∈N
∥·∥
δ

L−1(B̄∥·∥
δ (y)).

For each y ∈ N
∥·∥
δ , as y ∈ L(F ) we can chose x ∈ F such that x = L(y). By the same computation

as the previous point we have that L−1(B̄∥·∥
δ (y)) ⊆ B̄ρ

δ (x) and therefore N∥·∥
δ (L(F )) ≥ Nρ

δ (F ).

The two previous results can be summarized by the commutation of the following diagram.

X
π //

L

��

dimρ

B

""

X/ ∼

dimρ⋆

B

��
Rn

dime

B

// R+

Remark 10. As we have by Assumption 1 that the loss ℓ is bounded, so are the embeddings FS given
by (31). Therefore, their image FS(W ) for any W ∈ Rd are compactly contained in Rn, which makes
the covering numbers NρS

δ (·), and therefore the upper box-counting dimension, always well-defined. This
property shows that the boundedness assumption is unfortunately necessary to make our bounds defined
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and non-vacuous. This is one drawback of our work compared to some others like (Şimşekli et al.,
2021; Birdal et al., 2021) who only require a sub-Gaussian assumption on the loss. However, in the
aforementioned works, the hypothesis set WS,U needs to be bounded to make its upper box-counting
dimension finite, which is not required anymore in our work.

Accordingly, we now always make Assumptions 1, so that the considered δ-covers are finite.
Now let us turn our attention to the particular case of pseudo-metric ρS defined by Equation (28).

Due to the fact that we imposed, in Section 3.1, that the coverings f a set are included in this set, we have
to specify the closure properties of coverings in our case, to give meaning to the measurability results we
want to prove. This is done in the following lemma:

Lemma 3 (Closure property of coverings). Let W be a closed set and C be a countable dense subset
of W . Under Assumption 1 we have that any covering of C is a covering of W for pseudo-metric ρS.
Moreover we have, for all δ > 0:

|NρS

2δ (C)| ≤ |NρS

δ (W )| ≤ |NρS

δ (C)|. (32)

Proof. Let us consider some δ > 0, a minimal δ-cover {c1, . . . , cK} of C and w ∈ W . By density, there
exists a sequence (ξn)n in C such that ξn → w. As {c1, . . . , cK} is a finite cover of C, we can assume
without loss of generality that, for all n, ξn ∈ B̄ρS

δ (ci) for some i. Therefore, by continuity we have
ρS(w, ci) = limn→∞ ρS(w, ξn) ≤ δ. Thus:

|NρS

δ (W )| ≤ |NρS

δ (C)|.

Now, by Remark 4 (which is valid because it only requires the triangle inequality) we have:

|NρS

2δ (C)| ≤ |NρS

δ (W )|

Remark 11. Lemma 3 states that we can always construct minimal coverings as being minimal coverings
of dense countable subsets, this will always yields the same box-counting dimensions. Therefore, for now,
we will always consider coverings which are minimal coverings of a dense countable subset. This will allow
us to construct coverings of he considered sets in a measurable way, while not affecting the dimensions.
This consideration may be implicit in several proofs.

Now we finish this subsection with an important result asserting that the covering numbers we
get from pseudo-metric ρS are measurable with respect to S ∈ Zn. Indeed, this is essential to ensure
the fact that the upper box-counting dimension dimρS

B induced by ρS is a well-defined random variable,
which is require for a high probability bound of the form given by Equation (6) to make sense. This
kind of measurability conditions are often assumed by authors dealing with potentially random covering
numbers (Şimşekli et al., 2021; Camuto et al., 2021). In our case, we can prove this measurability under
some condition.

Recall that in Section 1.1 we required that Z has a metric space structure, typically inherited by
an inclusion in an Euclidean space RN and that its σ-algebra is the corresponding Borel σ-algebra. With
that in mind we prove the following theorem:

Theorem 4.1. Measurability of covering numbers in the case of fixed hypothesis set

Let W be a closed set, C be a dense countable subseta of W and δ > 0. Under Assumption 1, we
have that the mapping between probability spaces

(Zn, F⊗n) ∋ S 7−→ |NρS

δ (C)| ∈ (N+, P(N+)),

is a random variable, where P(A) denotes the subsets of a set A.
aIt always exists for any closed set in Rd.

Proof. For any set X let us denote by F≤k(X) the set of finite subsets of X with at most k elements.
We start by noting that thanks to the continuous loss assumption, we have that S 7→ ρS(w,w′) is
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continuous for any w,w′ ∈ Rd. Moreover, let us denote C := {wk, k ∈ N}.
Thus, to show the measurability condition, it suffices to show that for any M ∈ N+ we have: {S ∈
Zn, |NρS

δ (C)| ≤ M} ∈ F⊗n. we can write

|NρS

δ (C)| ≤ M ⇐⇒ ∃F ∈ F≤M (C), ∀k ∈ N, C ⊂
⋃

c∈F

B̄ρS

δ (c).

Therefore

{S ∈ Zn, |NρS

δ (C)| ≤ M} =
⋃

F ∈F≤M (C)

⋂
k∈N

⋃
c∈F

{S, ρS(c, wk) ≤ δ}. (33)

By continuity, it is clear that {S, ρS(c, wk) ≤ δ} ∈ F⊗n, hence we have the result by countable unions
and intersections.

Remark 12. Given any positive sequence δk, decreasing and converging to 0, thanks to Lemma 3 the
upper box-counting dimension can be written as

dimρS

B (W) = lim sup
k→+∞

log |NρS

δk
(C)|

log(1/δk) , (34)

which, by Theorem 4.1, implies that dimρS

B (W) is a random variable as countable upper limit of random
variables.

4.3 First result for a fixed hypothesis space
Thanks to the results of the last two subsections, we now have almost everything we need to prove our
first main result.

We need one last ingredient, which is necessary to control the dependence in S ∈ Zn of the limit
(34). This is achieved by the following theorem from Egoroff. The use of this theorem in our work is
inspired by previous studies Şimşekli et al. (2021); Camuto et al. (2021), in which it is a key element of
the proofs, for similar reasons than the one we face.

Essentially, Egoroff’s theorem states that the convergence of a sequence of measurable functions
in a finite measure space can be made uniform with probability arbitrarily large.

Theorem 4.2. Egoroff’s theorem Bogachev (2007)

Let (Ω,F , µ) be a measurable space with µ a positive finite measure. Let fn, f : Ω −→ (X, d) be
functions with values in a separable metric space X and such that µ-almost everywhere fn(x) →
f(x).
Then for all γ > 0 there exists Ωγ ∈ F such that µ(Ω\Ωγ) ≤ γ and on Ωγ the convergence of (fn)
to f is uniform.

Proof. From the simple convergence we have that

∀x ∈ Ω, ∀ϵ > 0, ∃m ≥ 1, ∀n ≥ m, d(fn(x), f(x)) ≤ ϵ.

Therefore let us introduce:

Am,ϵ := {x ∈ Ω, ∀n ≥ m, d(fn(x), f(x)) ≤ ϵ}.

Clearly from the assumptions we have that Am,ϵ ∈ F and by the dominated converge theorem we
have:

µ(Am,ϵ) −→
m→∞

µ(Ω) < +∞.

Let (ϵk)k be a decreasing sequence of positive numbers converging to 0. We deduce that for every
k ≥ 1 there exists mk ≥ 1 such that:

µ(Amk,ϵk
) ≥ µ(Ω) − γ

2k
.
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Therefore:
µ

( ∞⋂
k=1

Amk,ϵk

)
≥ µ(Ω) −

∞∑
k=1

γ

2k
= µ(Ω) − γ.

We conclude by noting that, by construction, the convergence is uniform on the set
⋂∞

k=1 Amk,ϵk
.

The next theorem is our extension of the classical covering bounds of Rademacher complexity
(Barlett and Mendelson, 2002; Rebeschini, 2020) presented in Section 4.1.

Theorem 4.3. Data-dependent fractal generalization bound for fixed hypothesis set

Let us consider a fixed closed hypothesis set W, under Assumption 1 we have the following: For
all ϵ, γ, η > 0 and n ∈ N+ there exists δn,γ,ϵ > 0 such that with probability at least 1 − 2η − γ
under S ∼ µ⊗n

z , for all δ < δn,γ,ϵ we have:

sup
w∈W

(
R(w) − R̂S(w)

)
≤ 2B

√
4(dimρS

B (W) + ϵ) log(1/δ) + 9 log(1/η)
n

+ 2δ.

Proof. Step 0: First of all, as W is closed, we can consider a dense countable subset Ca. Thanks to
the boundedness assumption, we can find finite coverings Nr for each value of r > 0. The notation Nr

refers in this proof to the set of the centers of a covering of C by closed r-balls under the pseudo-metric
ρS . Invoking results from Lemma 3, those set Nr are also δ-coverings of W and induce the upper
box-counting dimension of W under ρS , so that considering them does not change the dimension.
Step 1: Let us set:

G(S) := sup
w∈W

(
R(w) − R̂S(w)

)
.

Invoking proposition 2 we have:

G(S) ≤ 2Rad(ℓ(W, S)) + 3
√

2B2

n
log(1/η). (35)

Step 2:
Therefore we have everywhere for S ∈ Zn:

dimρS

B (W) := lim sup
r→0

log(|Nr|)
log(1/r) . (36)

Thanks to Theorem 4.1 we have that log(|Nr|) is a random variable. Let us consider an arbitrary
positive sequence rk decreasing and converging to 0. We have:

dimρS

B (W) := lim sup
k→∞

log(|Nrk
|)

log(1/rk) . (37)

Let γ > 0, by Egoroff’s Theorem 4.2 there exist a set Ωγ such that µ⊗n
z (Ωγ) ≥ 1 − γ, on which the

above convergence is uniform. Therefore, if we fix ϵ > 0, we have that there exists K ∈ N such that

∀S ∈ Ωγ , ∀k ≥ K, sup
0<δ<rk

log(|Nδ|)
log(1/δ) ≤ ϵ+ dimρS

B (W).

Now, setting δn,γ,ϵ := rK , we have that on Ωγ :

∀δ ≤ δn,γ,ϵ, log(|Nδ|) ≤ (ϵ+ dimρS

B (W)) log(1/δ). (38)

Now let us fix S ∈ Ωγ and the associated cover Nr, for (σi) Rademacher random variables independent
of S and Nr, taking two points w,w′ such that ρS(w,w′) ≤ r we can use the triangle inequality and
write:

1
n

n∑
i=1

σiℓ(w, zi) ≤ r + 1
n

n∑
i=1

σiℓ(w′, zi).
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Therefore we have:
Rad(ℓ(W, S)) ≤ r + Eσ

[
max
w∈Nr

1
n
σT ℓ(w, S)

]
.

As the Rademacher random variables are independent of the other random variables we have by
Massart’s lemma (lemma 3):

Rad(ℓ(W, S)) ≤ r +B

√
2 log(|Nr|)

n
.

Therefore if we take δ ≤ δγ we get that with probability at least 1 − γ:

Rad(ℓ(W, S)) ≤ δ + Eσ

[
max
w∈Nr

1
n
σT ℓ(w, S)

]
≤ δ +B

√
2 log(1/δ)

n
(ϵ+ dimρS

B (W)). (39)

Putting together equations 35 and 39 we get that with probability at least 1 − 2η − γ, for δ ≤ δn,γ,ϵ:

G(S) ≤ 2δ + 2B
√

4(ϵ+ d(S)) log(1/δ) + 9 log(1/η)
n

. (40)

athe fact that we cover a dense countable subset and not directly W here is just made to invoke the measurability
result of Theorem 4.1, it does not change anything to the proof.

Theorem 4.3 is therefore similar to (Şimşekli et al., 2021, Theorem 1) (Theorem 3.1 in this work),
which used a fractal dimension based on the Euclidean distance on Rd, ∥w−w′∥2 and a fixed hypothesis
space. One of the main improvement here is in the absence of Lipschitz assumption.

However, Theorem 4.3 might not be sufficiently satisfying. The proof involves techniques that do
not hold in the case of random hypothesis spaces, an issue which we address in the next subsection.

Let us make a very important remark about Theorem 4.3.

Remark 13. As we can see in the above statement, the bound is not asymptotic in n (as it was in
(Şimşekli et al., 2021)) but is asymptotic in δ, moreover this asymptoticity in δ depends on n. Another
way of writing it would be that there exists a sequence of positive numbers (δn) which is decreasing and
convergent to 0 (depending on the fixed parameter γ and ϵ) such that for all n we have:

sup
w∈W

(
R(w) − R̂S(w)

)
≤ 2B

√
4(dimρS

B (W) + ϵ) log(1/δn) + 9 log(1/η)
n

+ 2δn.

And therefore we have two terms appearing in this kind of bound:

• The fractal dimension, here represented by dimρS

B .

• The convergence rate of the limit defining this dimension, represented by δn.

Note, however, that if we could assume that the convergence of the limit defining the random upper box-
counting dimension, which is Equation (37) in the above proof, is uniform in n. Then we could actually
get that, by taking δn = 1/

√
n, for n big enough we have with probability 1 − 2η − γ that:

sup
w∈W

(
R(w) − R̂S(w)

)
≤ 2B

√
2(dimρS

B (W) + ϵ) log(n) + 9 log(1/η)
n

+ 2√
n
.

Therefore we would get a bound even more resembling Theorem 3.1, at the cost of asymptoticity in n.
Getting this uniformity is a research direction for future works.
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5 General case
Theorem 4.3 is interesting because it gives a bound similar to (Şimşekli et al., 2021) in the case of a fixed
hypothesis set but with a new notion of data dependent intrinsic dimension. Now we come to the case
where the hypothesis set WS,U generated by the learning algorithm (5) is a random set, more precisely we
want to prove a worst-case generalization bound over WS,U in terms of the random upper box-counting
dimension dimρS

B (WS,U ).
However, this new general case presents several new difficulties, compared to the bound with fixed

hypothesis set presented in Section 4.3. The main difficulties are the following:

• The hypothesis set WS,U is now a ‘random closed set’; to give meaning to our derivations and
prove our results, we will formalize it rigorously using the theory developed in (Molchanov, 2017).
This will allow us to refine our definition of learning algorithm (5), discuss a new measurability
assumption on the coverings and study some nice consequences of this assumption.

• The symmetrization technique used to link Rademacher complexity to the worst-case generalization
error in the proof of proposition 2 does not work anymore with random hypothesis sets. To overcome
this issue we introduce a technique of ‘approximate level sets of the risk population’. While this
allows us to have our proof work, it also introduces very intricate technical terms, which will be
discussed.

• Now that the hypothesis set is random, we have to deal with the statistical dependence between
WS,U and S, which is a similar issue than one faced in previous works (Şimşekli et al., 2021; Camuto
et al., 2021; Hodgkinson et al., 2022). This will involve information theoretic quantities which have
been defined in Section 2.3.

As a reminder, we still assume in all the following that Assumption 1 holds.

5.1 Random sets formalization
In this subsection, we prove rather technical results stating that we can construct coverings, covering
numbers and supremum over random sets in a measurable way, in an attempt to make the project more
rigorous. The reader not interested in those technical developments may go directly to Subsection 5.2
and assume that everything is measurable.

The worst-case generalization error, in the general setting of a learning algorithm presented in
Section 1.1, now takes the following form:

G(S,U) := sup
WS,U

(
R(w) − R̂S(w)

)
. (41)

Where, for now, we only required WS,U ⊂ Rd to be a closed set. However, this hypothesis set
is also random because of its dependence in S and U . In this subsection, we will make this precise by
describing basic notions of random set theory and prove a few technical results which will lay the ground
of a rigorous theoretical basis for our main results. The interested reader can consult (Kechris, 1995;
Molchanov, 2017). Other works mentioned similar formulation of the problem (Hodgkinson et al., 2022),
though with not much technical details.

Let us fix a probability space (Ω, T ,P) and denote X = Rd.

Remark 14. As highlighted by (Molchanov, 2017), we can develop the following theory in the more
general case where X is a locally compact Hausdorff second countable space, but we avoid those technical
considerations.

Example 9. In our setting, described in Section 1, the underlying probability space is (Zn × ΩU ,F⊗n ⊗
FU , µ

⊗n
z ⊗ µu).

The definition of a random closed set is the following:

Definition 11 (Random closed set). Consider a map W : Ω −→ CL(E), W is said to be a random
closed set if for every compact set K ⊂ E we have:

{ω,W (ω) ∩K ̸= ∅} ∈ T .
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A natural question is to know whether we can cast it as a random variable defined in the usual
way, the answer is yes and is formalized by the following definition.

Definition 12 (Effrös σ-algebra and Fell topology). The Effrös σ-algebra is the one generated by the
sets {W ∈ CL(E),W ∩K ̸= ∅} for K going over all compact sets in Rd.

The Fell topology on CL(E) is the one generated by open sets {W ∈ CL(E),W ∩K ̸= ∅} for K
going over all compact sets and {W ∈ CL(E),W ∩ O ≠ ∅} for O going over all open sets of Rd.

One can show that the Effrös σ-algebra on CL(E) corresponds to the Borel σ-algebra induced by
the Fell topology (Molchanov, 2017, Chapter 1.1). The Effrös σ-algebra will be denoted by E(E).

It can be shown that Definition 11 is equivalent to asking the measurability of W with respect to
E(E).

Let us now refine our definition of learning algorithm with the following assumption:

Assumption 2. We assume that WS,U is a random closed set in the sense of the above definition. It
means that the mapping defining the learning algorithm:

A :
+∞⋃
n=0

Zn × ΩU −→ CL(Rd),

is measurable with respect to the Effrös σ-algebra.

Thanks to this definition, we can already state one particularly useful result:

Proposition 13 (Theorem 1.3.28 in Molchanov (2017)). Consider (Gw)w∈E a R-valued, almost surely
continuous, stochastic process on E = Rd and W a random closed set in E. Then the mapping

Ω ∋ ω 7−→ sup
w∈W (ω)

Gw(ω)

is a random variable.

Example 10. If we define R(w) − R̂S(w) and W = WS,U , then thanks to the continuity of the loss
(Assumption 1) we have that the worst case generalization error defined by Equation (41) is a well-defined
random variable.

While Example 10 gives us useful information, it is actually not enough for some arguments of our
proofs to hold. In particular, to deal with the statistical dependence between the data and the random
hypothesis set, we want to be able to perform the following operation: Given a random closed set W and
S ∈ Zn we want to apply Proposition 4 and write:

PW,S

(
sup

w∈W
R(w) − R̂S(w) ≥ ϵ

)
≤ eI∞(W,S)PW ⊗ PS

(
sup

w∈W
R(w) − R̂S(w) ≥ ϵ

)
. (42)

In order for Equation (42) to hold, we actually need the measurability of the mapping

CL(Rd) × Zn ∋ (W,S) 7−→ sup
w∈W

|R(w) − R̂S(w)|,

with respect to E(Rd) ⊗ F⊗n.
We show two results in this direction, the first one assuming that the data space Z is countable5.

Lemma 4. As before, let (CL(Rd),E(Rd) denotes the closed sets of Rd endowed with the Effrös σ-algebra,
(Ω, T ) be a countable measurable space (with T = P(Ω)) and ζ(x, ω) be an almost surely continuous
stochastic process on Rd. Then the function

f : CL(Rd) × Ω ∋ (W,ω) 7−→ sup
x∈W

ζ(x, ω) ∈ R

is measurable with respect to E(Rd) ⊗ T .
5This countability assumption on the dataset is found in some other works, especially in (Şimşekli et al., 2021) who used

it to leverage the local stability of Hausdorff dimension, their argument is reported in the proof of Corollary 2

29



Proof. It is enough to show that f−1(]t,+∞[) ∈ E(Rd)⊗T for any t ∈ Q as those sets ]t,+∞[ generate
the Borel σ-algebra in R. Let us fix some t ∈ Q. Let us denote ζω := ζ(·, ω), we have:

f−1(]t,+∞[) =
⋃

ω∈Ω

(
{F ∈ CL(Rd), F ∩ ζ−1

ω (]t,+∞[) ̸= ∅} × {ω}
)
.

By (Molchanov, 2017, Proposition 1.1.2), we have that the sets of the form {F ∈ CL(Rd), F ∩O ≠ ∅}
generate E(Rd), with O running through open sets of Rd. Therefore the continuity of ζ and the
countability of Z give us:

f−1(]t,+∞[) ∈ E(Rd) ⊗ T .

If we want to get rid of the countability assumption on Ω, we have to introduce some metric
structure on it. This approach justifies the assumptions made on Z in Section 1.1.

Lemma 5. Assume that Ω is a Polish space with a dense countable subset D and that ζ is continuous
in both variables. Then the function:

f : CL(Rd) × Ω ∋ (W,ω) 7−→ sup
x∈W

ζ(x, ω) ∈ R,

is measurable with respect to E(Rd) ⊗ BΩ, where BΩ is the Borel σ-algebra on Ω.

Proof. As before, let t ∈ Q, for X,ω ∈ CL(Rd) × Ω we have that

(X,ω) ∈ f−1(]t,+∞[) ⇐⇒ ∃x ∈ X, ∃ϵ ∈ Q>0, ∃d̄ ∈ D, ∀d ∈ B(d̄, ϵ) ∩D, ζ(d, x) > t,

and therefore

f−1(]t,+∞[) =
⋃

r̄∈D

⋃
ϵ∈Q>0

(( ⋂
d∈B(d̄,ϵ)

{F ∈ CL(Rd), F ∩ ζ−1
ω (]t,+∞[) ̸= ∅}

)
×B(d̄, ϵ)

)
.

The results follows from the same arguments as in the proof of the previous lemma.

Those technical lemmas make the arguments made in this section, based on total mutual information,
valid.

To end this technical discussion about random closed set we try to answer the following questions:
are the covering numbers with respect to pseudo-metric ρS measurable? Moreover, can we construct
coverings that are well-defined random close sets themselves6?

To answer those related questions, we need to introduce Castaing’s representations, which are a
fundamental tool to deal with random closed sets (Molchanov, 2017, Theorem 1.3.3 and Definition 1.3.6).

Proposition 14 (Castaing’s representations). Let W be a random closed set in Rd, then there exists
a countable family (ξn)n≥1 of Rd-valued random variables whose closure is almost surely equal to W ,
namely:

{ξn, n ≥ 1} = W, almost surely.

Equipped with this result, we can easily extend Theorem 4.1 to the measurability of the covering
numbers associated to a Castaing’s representation of the hypothesis set:

Theorem 5.1. Measurability of covering numbers in the case of random hypothesis set

Let W ⊂ Rd be a random closed set over a probability space (Ω, T ) and δ > 0. Let us introduce
a Castaing’s representation (ξn)n≥1 of W .
Then, under Assumption 1, we have that the mapping between probability spaces

(Zn, F⊗n) ⊗ (Ω, T ) ∋ (S, ω) 7−→ |NρS

δ ({ξn(ω), n ≥ 1})| ∈ (N+, P(N+)),

6by covering we mean the position of the centers of a cover by closed balls, as in Section 3
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is a random variable, where P(A) denotes the subsets of a set A. In particular, the upper-box
counting dimension dimρS

B is a random variable.

Proof. The proof follows exactly that of Theorem 4.1 except that now have a Castaing’s representation
(ξn)n≥1 of W .
By the same proof than Equation (33), we have:

{(S, ω), |NρS

δ ({ξn(ω), n ≥ 1})| ≤ M} =
⋃

I∈F≤M (N+)

⋂
k∈N

⋃
i∈I

{(S, ω), ρS(ξi(ω), ξk(ω)) ≤ δ}.

By continuity and composition of random variables, it is clear that

{(S, ω), ρS(ξi(ω), ξk(ω)) ≤ δ} ∈ F⊗n ⊗ T ,

hence we have the result by countable unions and intersections.
Therefore dimρS

B (W (ω)) is a random variable is a random variable as a direct consequence of Lemma
3.

Thanks to Theorem 5.1, we are actually able to proof the much stronger result that we can build
measurable coverings.

Theorem 5.2. Measurable coverings

Let W ⊂ Rd be a random closed set over a probability space (Ω, T ,P) and δ > 0. Let F(N+)
denote the set of finite subsets of N+. Then, under Assumption 1, we can build a map:

Nδ : Zn × Ω −→ F(Rd) ⊂ CL(Rd),

which is measurable (with respect to the Effrös σ-algebra on the right hand-side) and such that
for almost all (S, ω) ∈ Zn × Ω, Nδ(S, ω) is a finite set which is (almost surely) a covering of W (ω)
with respect to pseudo-metric ρS and such that we have almost surely over µ⊗n

z ⊗ P:

dimρS

B (W (ω)) = lim sup
δ→0

|Nδ(S, ω)|
log(1/δ) .

Proof. Let us introduce a Castaing’s representation (ξk)k≥1 of W and denote by FN (N+) the set of
finite subsets of N+ with exactly N elements. Again, as in Theorem 4.1, the proof is based on the idea
that, thanks to the continuity of the loss ℓ defining the pseudo-metric ρS , a cover of {ξk, k ∈ N+}
covers W . Let us denote C(ω) = {ξk(ω), k ∈ N+}.
As FN (N+) is countable, for each N ∈ N+, we introduce (FN

i )i≥1 an ordering of FN (N+).
Now for each (S, ω) ∈ Zn × Ω, we define:

∀i ∈ N+, Fi(S, ω) := F
|NρS

δ
(C(ω))|

i .

Let us now introduce the minimal index of a set of indices that can cover W :

i0(S, ω) := argmin
{
i ∈ N+, ∀k ≥ 1, ∃j ∈ Fi(S, ω), ρ(ξj(ω), ξi(ω)) ≤ δ

}
.

Note that i0 is finite because {(ℓ(w, zi)1≤i≤n), winW} is compactly contained, thanks to the
boundedness assumption on ℓ, i.e. the covering numbers are finite.
We can therefore build the following ‘covering indices’ function:

Iδ : Zn × Ω −→ F(N+),

defined by Iδ(S, ω) = Fi0(S,ω)(S, ω).
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Now we want to introduce an ‘evaluation functional’, i.e. a mapping:

Ξ : Ω × F(N+) −→ F(Rd) ⊂ CL(Rd),

defined by Ξ(ω, I) = {ξi(ω), i ∈ I}. It is easy to see that Ξ is measurable, indeed for any compact
set K ⊂ Rd we have:

{(ω, I), Ξ(ω, I) ∩K ̸= ∅} =
⋃

F ∈F(N+)

⋃
i∈F

{ξi ∈ K} × {I},

implying the measurability by countable unions and Definition 12.
The key point of the proof is that we construct the coverings as Nδ(S, ω) = Ξ(ω, Iδ(S, ω)), so that
the measurability of Nδ reduces to that of Iδ. This is achieved by noting that for any non-empty
I ∈ F(N+), such that I = FN

i1
for some N, i1 ≥ 1, we have, by leveraging the countable ordering of

FN (N+):

I−1
δ ({I}) ={|NρS

δ (C(ω))| = N} ∩
( +∞⋂

k=1

⋃
m∈I

{(S, ω), ρS(ξk(ω), ξm(ω)) ≤ δ}
)

∩
( ⋂

i<i1

+∞⋃
k=1

⋂
m∈F N

i

{(S, ω), ρS(ξk(ω), ξm(ω)) > δ}
)
.

By Theorem 5.1, we have the measurability of (S, ω) 7→ |NρS

δ (W (ω))|, hence the measurability result
follows by continuity of ℓ (and therefore ρ·(·, ·)) and countable unions and intersections.
Now, using Lemma 3, Nδ(S, ω) also defines a covering of W and we have:

dimρS

B (W (ω)) = lim sup
δ→0

|Nδ(S, ω)|
log(1/δ) . (43)

Let us make the following important remark , which summarizes most of this subsection.

Remark 15. Theorem 5.2 shows that we can construct measurable coverings of the random closed
hypothesis set under pseudo-metric ρS. While those coverings may not be strictly speaking minimal,
they yields the same upper-box counting dimensions, which is enough for all proofs in this work to hold.
Note that this technical complication of not being minimal comes from the fact that we asked the minimal
coverings of a set F to be included in F , however this also removes further technical complications. If we
do not impose this condition, our proof would imply that we can construct measurable minimal coverings.

From now on, we will implicitly assume that the coverings we consider are measurable and induce
correct upper box-counting dimension, the present subsection being a theoretical basis for this assumption.

5.2 A generalization bound for random hypothesis space
We now come to the proof of a generalization bound for random hypothesis spaces, under the previous
assumptions. In particular, we assumed in Assumption 1 that the loss ℓ is bounded. Here, without loss
of generality we assume that uniformly we have ℓ ∈ [0, B], this will simplify the notations.

For notational purposes let us denote the upper box-counting dimension of WS,U induced by
pseudo-metric ρS by

d(S,U) := dimρS

B (WS,U ),
where ρS is the pseudo-metric define by Equation 28.

Let us also denote the worst-case generalization error by

G(S,U) := sup
w∈WS,U

(R(w) − R̂S(w)), (44)

which is a random variable thanks to the results of Section 5.1.
Moreover, as we proved in Remark 12, note that d(S,U) can be written as a countable limit of

random variables and therefore defines a random variable thanks to the measurability of the coverings.
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The main difficulty here is that classical arguments developed in Sections 2.2 and 4.3 based on
the Rademacher complexity cannot be applied in this case as WS,U depends on the data sample S. In
particular neither The symmetrization argument used nor the use of Mc-Diarmid’s inequality in the proof
of proposition 2 hold.

Remark 16. As proven by Foster et al. (2020), some kind of ‘uniform stability assumption’ (see Section
5.3) on the hypothesis set WS,U could make a reasoning similar to Mc-Diarmid inequality valid, however
it does not correct the issue regarding symmetrization. Moreover, we claim that this type of reasoning
essentially leads to expected bounds and make us lose too much geometrical information on WS,U .

Hence, to be able to develop a covering argument, we first cover the set WS,U by using the pseudo-
metric ρS and rely on the following decomposition: for any δ > 0 and w′ ∈ NρS

δ (WS,U ) we have that

R(w) − R̂S(w) ≤ R (w′) − R̂S (w′) + |R̂S(w) − R̂S (w′) | + |R(w) − R (w′)| .

In the above inequality, the first term can be controlled by standard techniques, namely concentration
inequalities and decoupling theorems presented in Section 2 as w′ lives in a finite set NρS

δ (WS,U ) and
the second term is trivially less than δ by the definition of coverings. However, the last term cannot be
bounded in an obvious way. To overcome this issue we introduce ‘approximate level-sets’ of the population
risk, defined as follows7 for some K ∈ N+:

Rj
S := WS,U ∩ R−1

([
jB

K
,

(j + 1)B
K

])
, (45)

where j = 0, . . . ,K − 1 and R−1 denotes the inverse image of R. The interval
[

jB
K , (j+1)B

K

]
will be

denoted Ij . Note that thanks to the
Let Nδ,j collect the centers of a minimal δ-cover of Rj

S relatively to ρS , the measurability condition
on the coverings extend to the randomness of those sets Nδ,j .

Remark 17. Without loss of generality we can always assume that those sets Rj
S are non-empty. Indeed

we can always add one deterministic point of R−1(Ij) in each of the coverings Nδ,j one deterministic
(always the same) element of R−1(Ij). It won’t make the mutual information term appearing in the final
result of Theorem 5.3 bigger (by the data-processing inequality) and it won’t change the upper box-counting
dimension because of its finite stability. Moreover if some of the sets R−1(Ij) are empty then we just need
to restrict ourselves to a deterministic subset of [0, B]. If we don’t want to do this, another way, maybe
cleaner, of handling the potential empty sets would be to use the convention max(∅) = 0 everywhere in the
proof, then we should also adapt the definition of ϵ(N, I) below to replace log(KN) by max(0, log(KN)),
where log(0) is set to −∞. All those manipulations would essentially lead to the same results.

Measurability of the coverings: We proved in Section 5.1 that we can construct measurable
coverings (as random sets), which are actually coverings of a dense countable subset (or a Castaing’s
representation) of WS,U . Therefore, without loss of generality and thanks to the continuity of the loss ℓ,
we can assume in all the remaining of this work that all the considered coverings are random sets, because
either they can be constructed by Theorem 5.2 or we can restrict ourselves to Castaing’s representations
of WS,U .

As can already be noted in Remark 17, our approximate level set technique introduces quite a lot
of technical difficulties and intricate terms. We believe that this proof technique is interesting but may
not be a definitive answer to the problem at hand, improving it is a direction for future research.

The next theorem provides a generalization bound for random hypothesis sets.

Theorem 5.3. Data-dependent fractal generalization bound for random hypothesis set

Let us set K = ⌊
√
n⌋ and define

In,δ := max
0≤j≤⌊

√
n⌋
I∞(S,Nδ,j).

Then, for all ϵ, γ, η > 0, there exists δn,γ,ϵ > 0 such that with probability at least 1 − η − γ under

7As U is independent of S, we drop the dependence on it to ease the notation.
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µ⊗n
z ⊗ µu, for all δ < δn,γ,ϵ we have:

G(S,U) ≤ B√
n− 1 + δ +

√
2B

√
(d(S,U) + ϵ) log(2/δ) + log(

√
n/η) + In,δ

n
.

Proof. As mentioned above, we assume without loss of generality that that the loss takes values in
[0, B].
Let us fix some integer K ∈ N+ and define Ij = [ jB

K , (j+1)B
K ], such that:

[0, B] =
K−1⋃
j=0

Ij

Then, given WS we define the set Rj
S := WS ∩ R−1(Ij).

We then introduce the random closed (finite) sets a Nδ,j corresponding to the centers of a minimal
covering of Rj

S , such that Nδ,j ⊂ Rj
S , for the pseudo-metric:

ρS(w,w′) := 1
n

n∑
i=1

|ℓ(w, zi) − ℓ(w′, zi)|.

The first step is to write that almost surely:

sup
w∈WS

(
R(w) − R̂S(w)

)
= max

0≤j≤K−1
sup

w∈Rj
S

(
R(w) − R̂S(w)

)
Then, given w,w′ ∈ Rj

S such that ρS(w,w′) ≤ δ we have by the triangle inequality:(
R(w) − R̂S(w)

)
≤

(
R(w′) − R̂S(w′)

)
+ ρS(w,w′) + |R(w) − R(w′)|

≤
(
R(w′) − R̂S(w′)

)
+ δ + B

K
.

(46)

So that we get:

sup
w∈WS

(
R(w) − R̂S(w)

)
≤ δ + B

K
+ max

0≤j≤K−1
max

w∈Nδ,j

(
R(w) − R̂S(w)

)
. (47)

Let us introduce the random element being the concatenation of the covers defined above:

N∪
δ := (Nδ,0, . . . , Nδ,K−1)

Now we fix some η > 0 and just introduce the random variable ϵ as a function of two variables N and
I:

ϵ(N, I) :=

√
2B2

n

(
log(1/η) + log

(
KN

)
+ I

)
.

We have by the decoupling Proposition 4 along with Fubini’s Theorem, Hoeffding inequality and a
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union bound:

P

(
max

0≤j≤K−1
max

w∈Nδ,j

(
R(w) − R̂S(w)

)
≥ ϵ(max

j
|Nδ,j |, max

j
I∞(S,Nδ,j))

)
≤

K−1∑
j=0

P

(
max

w∈Nδ,j

(
R(w) − R̂S(w)

)
≥ ϵ(Nδ,j , I∞(S,Nδ,j))

)

≤
K−1∑
j=0

eI∞(S,Nδ,j)PNδ,j
⊗ PS

(
max

w∈Nδ,j

(
R(w) − R̂S(w)

)
≥ ϵ(Nδ,j , I∞(S,N j

δ ))
)

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[
PS

(
max

w∈Nδ,j

(
R(w) − R̂S(w)

)
≥ ϵ(Nδ,j , I∞(S,N j

δ ))
)]

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[ ∑
w∈Nδ,j

PS

((
R(w) − R̂S(w)

)
≥ ϵ(Nδ,j , I∞(S,N j

δ ))
)]

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[
|Nδ,j | exp

{
−
nϵ(Nδ,j , I∞(S,N j

δ ))2

2B2

}]

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[
η

K
e−I∞(S,Nδ,j)

]
= η.

(48)

Now let us consider a random minimal δ-cover of the whole (random) hypothesis set WS . Given
j ∈ {0, . . . ,K − 1}, we have in particular almost surely that:

WS ∩Rj ⊆
⋃

w∈Nδ

BρS

δ (w)

Where BρS

δ (w) denotes the closed δ-ball for metric ρS centered in w. Therefore there exists a non-
empty subset Ñδ ⊆ Nδ such that for all w ∈ Ñδ we have BρS

δ (w) ∩Rj ̸= ∅.
Therefore we can collect in some set Ñδ,j one element in each BρS

δ (w) ∩ Rj for w ∈ Ñδ and the
triangular inequality gives us:

Rj
S ⊆

⋃
w∈Ñδ,j

BρS

2δ (w)

This proves that almost surely ∀j, |Nδ,j | ≤ |Nδ/2|, and thus:

max
0≤j≤K−1

|Nδ,j | ≤ |Nδ/2| (49)

We know that we have almost surely that:

lim sup
δ→0

log(|Nδ/2|)
log(2/δ) = dimρS

B (WS).

Therefore let us fix γ, ϵ > 0. Using Egoroff’s Theorem we can say that there exists δn,γ,ϵ > 0 such
that, with probability at least 1 − γ, for all δ ≤ δn,γ,ϵ we have:

log
(
|Nδ/2|

)
≤ (ϵ+ dimρS

B (WS)) log(2/δ)

Therefore combining equations 46, 48, 49, we get that with probability at least 1 − γ − η, for all
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δ ≤ δn,γ,ϵ:

sup
w∈WS

(
R(w) − R̂S(w)

)
≤ δ + B

K
+

√
2B2

n

(
log(K/η) + log

(
max

j
|Nδ,j |

)
+ max

j
I∞(S,Nδ,j)

)

≤ δ + B

K
+

√
2B2

n

(
log(K/η) + log |Nδ/2| + max

j
I∞(S,Nδ,j)

)

≤ δ + B

K
+

√
2B2

n

(
log(K/η) + log(2/δ)(ϵ+ dimρS

B (WS)) + max
j
I∞(S,Nδ,j)

)
The choice of K has not been done yet, considering the above equation the best choice is clearly:
K = Kn := ⌊

√
n⌋. Let us introduce the notation:

In,δ := max
j
I∞(S,Nδ,j).

This way we get that with probability at least 1 − γ − η, for all δ ≤ δn,γ,ϵ:

sup
w∈WS

(
R(w) − R̂S(w)

)
≤ δ + B√

n− 1 +
√

2B

√
log(

√
n/η) + log(2/δ)(ϵ+ dimρS

B (WS)) + In,δ

n
(50)

Note that it is possible to set this value of K, which depends on n, at the end of the proof, because
the previous limits do not depend on K.

aNote that, as mentioned earlier, in this paper we always assume that minimal coverings are random sets.

This theorem gives us a bound in the general case similar to (Şimşekli et al., 2021, Theorem 2),
yet without requiring Lipschitz continuity.

Moreover, also similar to (Şimşekli et al., 2021; Hodgkinson et al., 2022), Theorem 5.3 introduces
a mutual information term In,δ, which intuitively measures the local mutual dependence between the
data and the coverings. This can be seen as how the data influences the ‘local fractal behavior’ of the
hypothesis set. On the other hand, despite the similarity to prior work, In,δ might be more complex
because the dependence of Nδ,j on S comes both from the pseudo-metric ρS and the hypothesis set
WS,U . In the next subsection, we show that we can modify our theory in a way that it involves the
simpler mutual information term proposed in (Hodgkinson et al., 2022).

5.3 Uniform geometric stability and mutual information
The intricate dependence between Nδ,j and S makes it hard to express the term In,δ in Theorem 5.3 or
bound it with standard methods (e.g. data-processing inequality). In this subsection, we introduce a
notion of ‘geometric stability’ to obtain a more interpretable bound.

Algorithmic stability is a key notion in learning theory and has been shown to imply good
generalization properties (Bousquet, 2002; Bousquet et al., 2020; Chandramoorthy et al., 2022). Recently,
Foster et al. (2020) extended this notion to the stability of hypothesis sets, and proposed a notion of
stability as a bound on a kind of Hausdorff distance between the hypothesis sets generated by neighboring
datasets. In our setting this would mean that there exists some β̄ > 0 such that for all S, S′ ∈ Zn differing
only by one element, for all u ∈ U , we have:

∀w ∈ WS,U , ∃w′ ∈ WS′,U , ∀z ∈ Z, |ℓ(w, z) − ℓ(w′, z)| ≤ β̄. (51)

Foster et al. (2020) argue that in many situations β̄ = O(1/n).
While Equation (51) has been proven to be powerful, especially to relate the worst-case generalization

error to its expectation, we claim that it is not enough to capture the fine geometrical behavior of fractal
hypothesis sets. Indeed, it gives a global information about a particular kind of Hausdorff distance
between two sets, without giving local information, e.g. on the coverings.

36



Inspired by (Foster et al., 2020), we introduce a stability notion, coined geometric stability, on the
minimal coverings that will allow us to reduce the statistical dependence between the dataset S ∼ µ⊗n

z

and those coverings.
To state our stability notion, we need to refine our definition of coverings. Let A ⊂ Rd be some

closed set, potentially random. For any δ > 0 we define Nδ(A,S) to be the random minimal coverings
of A by closed δ-balls under pseudo-metric ρS (28) with centers in A. Note that the dependence in S
in Nδ(A,S) only refers to the pseudo-metric used. In addition to being able to construct measurable
coverings Nδ(A,S), making it a well-defined random set, we add the fact that this selection can be made
regular enough in the following sense.

Definition 13 (geometric stability). We say that a set A is geometrically stable if there exist some β > 0
and α > 0 such that for δ small enough we can find a random covering S 7→ Nδ(A,S) such that for all
S ∈ Zn and S′ ∈ Zn−1 such that S′ = S \ {zi} for some i, then Nδ(A,S) and Nδ(A,S′) are within β/nα

distance for an uniform data-dependent Hausdorff distance, i.e.,

∀w ∈ Nδ(S,A), ∃w′ ∈ Nδ(S′, A), sup
z∈Z

|ℓ(w, z) − ℓ(w′, z)| ≤ β

nα
. (52)

Based on this definition, we assume the following condition.

Assumption 3. Let K ∈ N+. There exists α ∈ (0, 3/2) and β > 0 (potentially depending on K) such
that all sets of the form WS,U ∩ R−1([

jB
K , (j+1)B

K

])
are geometrically stable with parameters (α, β).

Assumption 3 essentially imposes a local regularity condition on the fractal behavior of WS,U with
respect to the pseudo-metric ρS . Intuitively it means that we can select a regular enough covering among
all coverings. Note that the geometric stability is a condition on how the coverings vary with respect to
the pseudo-metric, which is fundamentally different than (Foster et al., 2020).

The next theorem provides a generalization bound under the geometric stability condition.

Theorem 5.4. Data-dependent fractal generalization bound using geometric stability

Let d(S,U) and G(S,U) be as in Theorem 5.3 and further define I := I∞(S,WS,U ). Suppose that
3 holds. Then there exists constants nα, δγ,ϵ,n > 0 such that for all n ≥ nα, with probability
1 − γ − η, and for all δ ≤ δγ,ϵ,n, the following inequality holds:

G(S,U) ≤ 3B + 2β
nα/3 + δ +B

√(
ϵ+ d(S,U)

)
log(4/δ) + log(1/η) + log(n) + I

2n 2α
3

.

Moreover, we have that nα = max{2 3
2α , 21+ 3

3−2α }.

Let us present the proof of Theorem 5.4. The proof proceeds in two steps and is based on what we
will call a grouping technique. The main idea is to divide the dataset S ∈ Zn into H groups J1, . . . , JH

of size J with J,H ∈ N+ and JH = n. In the end of the proof a particular choice is made.
A minor technical difficulty appears when it is not actually possible two write JH = n for a

pertinent choice of (J,H). Therefore we first present a result, Proposition 15, when the latter is possible
and then derive two corollaries to deal with this technical issue, mostly based on the boundedness
assumption. Theorem 5.4 will be the second corollary.

Remark 18. For the sake of the proof we need to assume α ≤ 3
2 , which is just asking for a potentially

weaker assumption, which is not a problem. Note that the value α ≤ 3
2 will lead in Theorem 5.4 to a

convergence rate in n−1/2 which is optimal anyway.

Let us start with the more interesting result of this section, which contains the main proof
techniques.

Proposition 15. Under Assumptions 1, 2 and 3 with the same notations than in Theorem 5.4, we also
take arbitrary J,H ∈ N+ such that JH = n
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Then for all n ≥ 2 3
3−2α , with probability 1 − γ − η, for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈WS,U

|R(w) − R̂S(w)| ≤δ + B√
n− 1 + 2Jβ

nα

+H

√
JB2

2n2

((
ϵ+ d(S,U)

)
log(4/δ) + log(H

√
n/η) + I

)
Proof. Let us first refine our notations for the coverings to make the proof clearer. Throughout this
section, for any S, S′ we will denote Nδ(S, S′, U) the centers of a covering of WS,U by closed δ-balls
under pseudo-metric dS′ . As in the proof of Theorem 5.3, we introduce some approximate level sets
Rj

S for j ∈ {0, . . . ,K − 1}. We then denote by Nδ,j(S, S′, U) the centers of a covering of Rj
S by closed

δ-balls under pseudo-metric dS′ . (note that the Rj
S still depends on U but the dependence has been

dropped to ease the notations).
The proof starts by introducing the "level-sets" of the population risk as in the proof of Theorem 5.3.
We define Rj

S exactly in the same way. The same remark as in proof of Theorem 5.3 about the fact
that we can assume Rj

S is non-empty also holds here.
The proof starts with the same statement:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤ max
0≤j≤K−1

sup
w∈Rj

S

|R(w) − R̂S(w)|

For all j, we (minimally) cover Rj
S with δ-covers for pseudo-metric dS , such that the centers are in

Rj
S . We collect those centers in Nδ,j(S, S, U).

This leads us to:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤ δ + B

K
+ max

0≤j≤K−1
max

w∈Nδ,j(S,S,U)
|R(w) − R̂S(w)|︸ ︷︷ ︸
:=Ej

(53)

Thanks to our stability assumption 3, we can say that for δ small enough there exists a random minimal
covering such that for all j ∈ {0, . . . ,K − 1} and all k ∈ {1, . . . ,H} the covering Nδ,j(S, S\Jk , U)
satisfies:

∀w ∈ Nδ,j(S, S, U), ∃w′ ∈ Nδ,j(S, S\Jk , U), sup
z∈Z

|ℓ(w, z) − ℓ(w′, z)| ≤ βJ

nα

Where the J factor on the right hand side comes from the fact that our stability assumption can be
seen as a Lipschitz assumption in terms of the Hausdorff distance of the coverings with respect to the
Hamming distance on the datasets.
Recall that we assume that all Nδ,j have coverings-metrics stability with common parameters β, α.
As in the previous proposition, we split the index set {1, . . . , n} into H groups of size J , with HJ = n,
which allows us to write (with a similar proof):

Ej = max
w∈Nδ,j(S,S,U)

|R(w) − R̂S(w)|

≤ max
w∈Nδ,j(S,S,U)

H∑
k=1

1
n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣
≤

H∑
k=1

max
w∈Nδ,j(S,S,U)

1
n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣
≤

H∑
k=1

{
2βJ2

n1+α
+ 1
n

max
w∈Nδ,j(S,S\Jk ,U)

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣}

= 2Jβ
nα

+ 1
n

H∑
k=1

max
w∈Nδ,j(S,S\Jk ,U)

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣
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Putting this back into equation (53) we get:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤ δ + B

K
+ 2Jβ

nα

+ max
0≤j≤K−1

H∑
k=1

max
w∈Nδ,j(S,S\Jk ,U)

1
n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣
≤ δ + B

K
+ 2Jβ

nα

+H max
0≤j≤K−1

max
1≤k≤H

max
w∈Nδ,j(S,S\Jk ,U)

1
n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣︸ ︷︷ ︸
:=Mj,k(S,U)

(54)

Let ϵ be a random variable depending on Nδ,j(S, S\Jk , U) only. We use a decoupling lemma (lemma
1 in (Hodgkinson et al., 2022)) along with Hoeffding’s inequality to write:

P
(
Mj,k(S,U) ≥ ϵ

)
≤ eI∞(Nδ,j(S,S\Jk ,U),SJk

)PNδ,j(S,S\Jk ,U) ⊗ PSJk

(
Mj,k(S,U) ≥ ϵ

)
≤ eI∞(Nδ,j(S,S\Jk ,U),SJk

)ENδ,j(S,S\Jk ,U)

[
PSJk

(
Mj,k(S,U) ≥ ϵ

)]
≤ eI∞(Nδ,j(S,S\Jk ,U),SJk

)

× ENδ,j(S,S\Jk ,U)

[
PSJk

( ⋃
w∈Nδ,j(S,S\Jk ,U)

{
1
n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi) − R(w)

)∣∣∣∣ ≥ ϵ

})]

≤ eI∞(Nδ,j(S,S\Jk ,U),SJk
)E

[
|Nδ,j(S, S\Jk , U)|e− 2ϵ2n2

JB2

]
(55)

The key point of the proof, and the reason for which we have introduced this strong stability
assumption on the coverings is that we can now use the following Markov chain:

SJk
−→ WS,U −→ Nδ,j(S, S\Jk , U). (56)

Therefore, by the data processing inequality:

I∞(Nδ,j(S, S\Jk , U), JJk
) ≤ I∞(WS,U , SJk

)

Now using the easier Markov chain:

WS,U −→ S −→ SJk
,

We have:
I∞(Nδ,j(S, S\Jk , U), SJk

) ≤ I∞(S,WS,U ) (57)

Note that the mutual information term appearing in equation (57) is the same than the one appearing
in (Hodgkinson et al., 2022).
Thus:

P
(
Mj,k(S,U) ≥ ϵ

)
≤ eI∞(S,WS,U )E

[
|Nδ,j(S, S\Jk , U)|e− 2ϵ2n2

JB2

]
Equipped with this result we can make an informed choice for the random variable ϵ, for a fixed η > 0:

ϵ = ϵj,k :=

√
JB2

2n2

(
log |Nδ,j(S, S\Jk , U)| + log(HK/η) + I∞(S,WS,U )

)
,
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Now we can apply a union bound to get:

P
(

max
0≤j≤K−1

max
1≤k≤H

Mj,k(S,U) ≥ max
0≤j≤K−1

max
1≤k≤H

ϵj,k

)
≤

K−1∑
j=0

H∑
k=1

P
(
Mj,k(S,U) ≥ max

0≤j≤K−1
max

1≤k≤H
ϵj,k

)
≤

K−1∑
j=0

H∑
k=1

P
(
Mj,k(S,U) ≥ ϵj,k

)
= η

Now let us have a closer look at those covering numbers |Nδ,j(S, S\Jk , U)|. Note that we have:

∀w,w′ ∈ Rd, dS\Jk (w,w′) ≤ n

n− J
dS(w,w′),

And therefore |Nδ,j(S, S\Jk , U)| ≤ |N δ(n−J)
n ,j

(S, S, U)|.
Moreover, using the same reasoning as in the proof of Theorem 5.3, we know that we have
|Nδ,j(S, S\Jk , U)| ≤ |Nδ/2(S, S\Jk , U)|.
Thus:

|Nδ,j(S, S\Jk , U)| ≤ |N δ(n−J)
2n

(S, S, U)|

As before, we will want to solve the trade-off in the values of H and J by setting J = nλ for some
λ ∈ (0, 1) (this time we do not allow the value λ = 1, which will be justified later when we find the
actual value of λ). A very simple calculation gives us:

δ(n− J)
2n = δ

2

(
1 − 1

n1−λ

)
Therefore we can say that if n ≥ 2 1

1−λ , then δ(n−J)
2n ≥ δ/4 and therefore:

|Nδ,j(S, S\Jk , U)| ≤ |N δ
4
(S, S, U)| (58)

We know that:

dimdS

B (WS,U ) = lim sup
δ→0

|N δ
4
(S, S, U)|

log(4/δ) .

If we fix ϵ, γ > 0, we can apply Egoroff’s Theorem to write that with probability 1 − γ, we have for δ
small enough:

|N δ
4
(S, S, U)| ≤

(
ϵ+ dimdS

B (WS,U )
)

log(4/δ)

Therefore, we can
say that with probability 1 − η − γ, we have for δ small enough:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤ δ + B

K
+ 2Jβ

nα

+H

√
JB2

2n2

((
ϵ+ dimdS

B (WS,U )
)

log(4/δ) + log(HK/η) + I∞(S,WS,U )
) (59)

Setting K = ⌊
√
n⌋ and noting that 1 − α/3 ≤ 1 in the above equation gives us the result.

Corollary 3. With the exact same setting than in proposition 15, if we assume in addition that nα/3 ∈
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N+, then for all n ≥ 2 3
3−2α , with probability 1 − γ − η, for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤δ + B + 2β
nα/3

+B

√
log(1/η) +

(
1 − α

3
)

log(n) + I +
(
ϵ+ d(S,U)

)
log(4/δ)

2n 2α
3

Proof. We want to write J in the form J = nλ with some λ > 0. We see that there is a trade-off to
be solved in the values of (J,H) if we want both all terms in equation (59) to have the same order
of magnitude in n, which leads to H

√
J/n = J/nα. Therefore we want to have 1/

√
J = J/nα and

λ/2 = α− λ, which implies the following important formula:

λ = 2α
3 (60)

Finally, we are left again with choosing the value of K, an obvious choice is K = nα/3 ∈ N+ to get
the same order of magnitude. Thus we get the final result: for n ≥ 2 3

3−2α , with probability 1 − γ − η,
for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤δ + B + 2β
nα/3

+B

{ log(1/η) +
(
1 − α

3
)

log(n) + I +
(
ϵ+ d(S,U)

)
log(4/δ)

2n 2α
3

} 1
2

(61)

Remark 19. The asymptoticity in δ defined by δγ,ϵ,n above accounts for the asymptoticity coming both
from the stability assumption (definition 13) and the convergence of the limit defining the upper box-
counting dimension.

Now we prove Theorem 5.4 which is based on the same idea than the previous corollary, but when
nα/3 /∈ N. The proof is as follows:

Proof. We define J := ⌊n2α/3⌋, J := ⌊n1−2α/3⌋ and ñ := JH. We obviously have ñ ≤ n.
Using the boundedness assumption we have:

|R̂S(w) − R(w)| ≤ n− ñ

n
B + ñ

n

∣∣∣∣ 1
ñ

ñ∑
i=1

ℓ(w, zi) − R(w)
∣∣∣∣ (62)

For the first term we write:
n− ñ

n
B ≤

n−
(
n2α/3 − 1

)(
n1−2α/3 − 1

)
n

= n2α/3 + nα/3 − 1
n

≤ 2B
nα/3

The idea is to apply the proof of Theorem 15 to the last term of equation (62), replacing dSn
with

dSñ . For clarity we still denote S = (z1, . . . , zn) and Sñ = (z1, . . . , zñ)
There are several terms we need to consider:
The mutual information term: The two data processing inequality we apply to prove equation
(57) still apply so we can still write I∞(S,WS,U ) in the bound.
Dimension term: Let us denote by d(S, S′, U) the upper-box dimension of WS,U for pseudo-metric
dS′ . Using the same reasoning than equation (58), we have:

|Nδ(S, Sñ, U)| ≤ |Nδ ñ
n

(S, S, U)|

We have:
δ
ñ

n
≥ δ

(
n2α/3 − 1

)(
n1−2α/3 − 1

)
n

≥ δ

(
1 − 1

n2α/3

)
And therefore, once we have n ≥ 2 3

2α we have:

|Nδ(S, Sñ, U)| ≤ |N δ
2
(S, S, U)|,
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which implies:
d(S, Sñ,U ≤ d(S, S, U).

Terms in n: Now we look at equation (59), where we have 4 types of term in n which are of the
form:

• 1/K

• H
√
J/n

•
√

log(HK)H
√
J/n

• J/nα

We do not forget that we also have to multiply those terms by the factor ñ/n coming from equation
(62). Setting K := ⌊1 +

√
J⌋ we get successively:

ñ

n

1
K

≤ 1
nα/3 ,

ñ

n
H

√
J/n ≤ 1

nα/3 ,
ñ

n
J/nα ≤ 1

nα/3 .

For the logarithmic term we have:

log(HK) ≤ log(2
√
Jn1−2α/3) ≤ log(2n1−α/3)

Moreover, if n ≥ 2 3
2α we have:

ñ ≥
(
n2α/3 − 1

)(
n1−2α/3)

≥ n/2.

Therefore the condition ñ ≥ 2 3
3−2α is implied by n/2 ≥ 2 3

3−2α . So now the condition on n becomes:

n ≥ C(α) := max{2 3
2α , 21+ 3

3−2α } (63)

Putting all of this together, we get that for n ≥ C(α) (defined in equation (63)), with probability
1 − γ − η, for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈Ws,U

|R(w) − R̂S(w)| ≤δ + 3B + 2β
nα/3

+B

√
log(1/η) +

(
1 − α

3
)

log(n) + I +
(
ϵ+ d(S,U)

)
log(4/δ)

2n 2α
3

(64)

While Assumption 3 might be restrictive, our goal here is to highlight how such geometric regularity
can help us deal with the statistical dependence between the data and the hypothesis set.

Note that the mutual information term appearing in Theorem 5.4 is much more interpretable
compared to the corresponding terms in Theorem 5.3, and has the exact same form as the term presented
in (Hodgkinson et al., 2022).

We also note that, this way of controlling the dependence between the data and the hypothesis
set comes at the expense of potentially losing in the convergence rate of our bound. More precisely, for
a stability index of α, we get a convergence rate of n−α/3. By examining the value of constant nα in
Theorem 5.4, we observe that getting closer to an optimal rate (α ≈ 3

2 ) implies a larger nα, rendering
our bound asymptotic.
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6 Computational aspects and experimental results
In this section, we will illustrate how the proposed data-dependent dimension can be numerically computed,
by making a rigorous connection to topological data analysis (TDA) tools Boissonat et al. (2018). This is
achieved in Section 6.2 by extending the algorithm proposed by Birdal et al. (2021) to our pseudo-metric
case. Their method is based on results on ‘persistent homology’ that we will briefly introduced in Section
6.1. For a more details introduction, the interested reader is invited to consult (Boissonat et al., 2018;
Memoli and Singhal, 2019).

We will then use those notions to numerically evaluate the correlation between the proposed data-
dependent intrinsic dimension and the generalization error and compare it to the fractal dimensions
proposed in (Şimşekli et al., 2021; Birdal et al., 2021), in terms of correlation statistics, including the
recently introduced ‘granulated Kendall’s coefficients’ (Jiang et al., 2019).

6.1 Persistent homology
Persistent homology (PH) is a well known notion in TDA typically used for point cloud analysis Edelsbrunner
and Harer (2010); Carlsson (2014). Previous works have linked neural networks and algebraic topology
Rieck et al. (2019); Pérez-Fernández et al. (2021), especially in Corneanu et al. (2020) who established
experimental evidence of a link between homology and generalization. Important progress was made in
Birdal et al. (2021), who used PH tools to estimate the upper-box counting dimension induced by the
Euclidean distance on WS,U . In this subsection, we introduce a few necessary PH tools to understand
this approach.

Throughout this subsection we consider a finite set of point W ⊂ Rm. We will denote by K the
unique two elements field Z/2Z.

Definition 14 (Abstract simplicial complex and filtrations). Given a finite set V , an abstract simplicial
complex (which we will often refer simply as complex) K is a subset of P(V ) the subsets of V such that:

• ∀v ∈ V, {v} ∈ K

• ∀s ∈ K,P(s) ⊆ K

The elements of K are called the simplices. For any non-empty simplex s, we call the number |s| − 1 its
dimension, denoted dim(s). Given a simplicial complex K, a filtration of K is a sequence of sub-complexes
increasing for the inclusion ∅ ⊂ K0 ⊂ · · · ⊂ KN = K such that every complex is obtained by adding one
simplex to to the previous one: Ki+1 = Ki ∪ {σi+1}. Thus a filtration of a complex induces an ordering
on the simplices, which will be denoted (si)i by convention.

An example of simplicial complex is provided on Figure 1. A filtration will be denoted by

∅ −→ K0 −→ · · · −→ KN = K,

and the corresponding simplices, in the order in which they are added to the filtration, will typically be
denoted by (s0, . . . , sN ).

Example 11. The most important filtration that we shall encounter is the Vietoris-Rips filtration (VR
filtration) Rips(W ). For any δ > 0 we first construct the Vietoris-Rips simplicial complex Rips(W, δ)
by the following condition:

∀k{w1, . . . , wk} ∈ Rips(W, δ) ⇐⇒ ∀i, j, d(pi, pj) ≤ δ. (65)

Then Rips(W ) is formed by adding the complexes in the increasing order of δ from 0 to +∞. Complexes
with the same value of δ are ordered based on their dimension and ordered arbitrarily if they have the
same dimension. See Figure 1.

Remark 20. There exist other natural filtrations, notably the Cech filtration. However VR filtration and
Cech filtration are equivalent to compute persistent homology of degree 0, which is our main interest here.
Therefore all the filtrations we will consider will be VR filtrations for better clarity.
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Figure 1: Left: Example of simplicial complex, in 3D space, figure from (Boissonat et al., 2018). Right:
Example of Vietoris-Rips complex, figure from (Birdal et al., 2021).

Intuitively, Persistent homology of degree i keeps track of lifetimes of ‘holes of dimension i’, it is
built over the concept of chains, which are a sort of linearized version of sets of simplices. More precisely,
the space of k-chains Ck(K) over complex K is defined as the set of formal linear combinations of the
k-dimensional simplices of k:

Ck(K) := span
( ∑

i

ϵisi, ∀i, dim(si) = k
)
. (66)

We will denote a simplex by its points s = [w0, . . . , wk] and use the notation s\i := [w0, . . . , wi−1, wi+1, . . . , wk].
The boundary operator ∂ : Ck(K) −→ Ck−1(K) is the linear map induced by the relations on the simplices:

∂(s) =
k∑

i=0
s\i. (67)

Example 12. Consider a ‘triangle’, i.e. a simplex with 3 points [a, b, c]. Then the boundary operator,
by Equation (67) gives us

∂[a, b, c] = [a, b] + [a, c] + [b, c],
which corresponds to the boundary of the triangle, in the usual geometric sense. The above definition of
the boundary operator is just a multidimensional extension of this simple fact.

It is easy to verify that ∂2 = 0 and therefore we have an exact sequence, where N = |W |,

{0} ∂−→ CN (K) ∂−→ CN−1(K) ∂−→ . . .
∂−→ C0(K) ∂−→ {0},

from which it is natural to define:
Definition 15 (Cycles and homology groups). With the same notations, we define:

• The k cycles of K: Zk(K) := ker(∂ : Ck(K) −→ Ck−1(K)).

• The k-th boundary of K: Bk(K) := ℑ(∂ : Ck+1(K) −→ Ck(K)).

• k-th homology group (it is actually a quotient vector space): Hk(K) := Zk/Bk.

The k-th Betti number of K is defined as the dimension of the homology group: βk = dim(Hk(K)).
Those Betti numbers, βk, correspond, in our analogy, to the number of holes of dimension k, i.e.

the numbers of cycles whose ‘interior’ is not in the complex, and therefore corresponds to a hole.
Remark 21. In particular, β0 corresponds to the number of connected components in the complex.

Now that we defined the notion of homology, we go on with the definition of persistent homology
(PH). The intuition is the following: when we build the Vietoris-Rips filtration of the point cloud W , by
increasing parameter δ in Example 11, we collect the ‘birth’ and ‘death’ of each hole, the multiset8 of
those pairs (birth, death) will be the definition of persistent homology.

8By multiset, we mean that it can contain several time the same element, in our case the same persistence pair.
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Remark 22. In all the following, the parameter δ used in the definition of the Vietoris-Rips filtration
will be seen as a time parameter.

Construction of persistence pairs: Let us consider the VR filtration of the set W , which we
denote by the ordering of simplices with the same notations than in definition 14, so that the filtration is
represented by the sequence of simplices (si)i. We call si positive if it is part of a dim(si)-cycle, otherwise
it is negative. Persistence homology is based on an inductive construction of the basis of the homology
groups associated to the filtration Hk(Ki), two things can happen when we add a simplex si in the
filtration (see (Boissonat et al., 2018, Chapters 11, 12) for more details):

• si is positive: Then si is added in the basis of Hk(Ki), with k = dim(si).

• si is negative: Then we denote K+1 = dim(si) and (ei1,...,eip
) a basis of Hk(Ki−1). We can show

that it is possible to write:
∂sj =

∑
j

ϵjeij
+B,

With B a boundary and not all coefficients are 0. Therefore, selecting one of them arbitrarily, for
example ℓ = argmax{j, ϵj = 1}, we have to remove cij from the basis of Hk(Ki−1).

Therefore positive increment the basis of the homology groups (they create holes) while negative simplicies
destroy one element of the basis (they fill holes). With the same notation we say that b is the birth of
element eij while d = i is its death. This way we build a sequence of persistent pairs. Those persistent
pair are a characteristic of the complex and the multiset of lifetimes (d−b) is independent of the ordering
of the VR filtration or any arbitrary choice made in the construction.

Definition 16 (Persistent homology). The persistent homology of degree k, denoted PHk is the multiset
of all lifetime δ(death)−δ(birth) obtained when constructing the basis of Hk, where δ is the length defining
the VR complexes (equation 65).

Persistent homology of degree 0: The persistent homology of degree 0, which is of primary
interest for us, is actually very simple to describe. When constructing the VR filtration of W , all zero
dimensional simplices (single points) are first added in an arbitrary order, they are obviously all positive
and their equivalence class are added in the basis of H0. Thus all of them have a birth δ equal to 0. Then
each time a 1 dimensional simplex si is added:

• If si is positive: then it will impact only the basis H1, so we don’t care about it.

• Otherwise it means that si =: [a, b] destroys one connected component by connecting two previously
unconnected component. Therefore a and b have the same class in H0(Ki). Selecting arbitrary a
or b, we define its death as the current δ.

Remark 23. We see that in the case of PH0(Rips(W )), it would suffice to collect the multiset of death
times of connected components.

Figure 2: Simple example to illustrate PH0(Rips(W )).

Example 13. Consider the point cloud W = {a, b, c, d} represented on Figure 2, where the grid has unit
length 1. Then we have PH0(Rips(W )) = {{(0, 1), (0, 1), (0, 2)}}, with multiset been denoted by {{·}}.

Definition 17 (Persistent homology dimension). For any α ≥ 0 we define:

Eα(W ) :=
∑

(b,d)∈PH0(Rips(W ))

(d− b)α. (68)
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The persistent homology dimension of degree 0 (PH dimension) of any set bounded metric space W is
then defined as:

dimPH0(W) := inf{α > 0, ∃C > 0, ∀W ⊂ W finite, Eα(W ) < C}.

Where the definition of VR filtration in finite subsets of metric spaces is naturally defined.

The importance of this dimension for our work relies in the following result (see Schweinhart (2019),
Kozma et al. (2005)):

Proposition 16. For any bounded metric space X, we have dimB(X) = dimPH0(X).

Proposition 16 opens the door to the numerical estimation of the upper-box dimension. Indeed,
PH can be evaluated via several libraries (Bauer, 2021; Pérez et al., 2021), moreover, Birdal et al.
(2021) noted that, while Definition 17 is impossible to evaluate in practice, it can be approximated from
PH0(Rips(W )) computed on a finite number of finite subsets of the point cloud W.

6.2 Numerical estimation of the data-dependent fractal dimension
In this subsection, we will describe how we can use the aforementioned algorithm form Birdal et al. (2021)
to numerically approximate our data-dependent fractal dimension dimρS

B (WS,U ).
As our dimension is defined through a (bounded) pseudo-metric, we must first prove that Proposition

16 extends to this setting. The key ingredient is the following Proposition, which states that the persistent
homology dimension is invariant under metric identification (see Definition 10 for notations).

Proposition 17 (Persistent homology dimension in pseudo metric spaces). Consider a bounded pseudo-
metric space (X, ρ), then we have the equality:

dimPH0(X) = dimPH0(X/ ∼).

Intuitively, the proof of this result is as follows: When constructing the VR filtration in a pseudo-
metric space, points within 0 pseudo-distance will only add pairs of the form (0, 0) in their persistence
homology of degree 0, because they are created with the same value of the distance parameter δ in
construction of the VR filtration.

Proof. Let K be a simplicial complex based on a finite point set T ∈ X. Let us denote by K̃ := π(K)
the image of K by the canonical projection π : X −→ X/ ∼, defined by its value on the simplices:

π([a0, . . . , as]) := [π(a0), . . . , π(as)]. (69)

We also introduce a section of π, i.e. an injective application s : X/ ∼−→ X, such that π ◦ s = IdX/∼.
Clearly, K̃ is still a simplicial complex.The map π does not preserve the dimension of the simplices,
as [π(a0), . . . , π(as)] is seen as a set, and two ai can have the same image, but π always reduces the
dimension.
Note that K̃ and s(K̃) clearly define simplicial complex, but that s(K̃) can only be seen as a sub-
complex of K. Therefore, we define s : K̃ −→ K analogously to Equation (69). Actually, by injectivity
of s, this allows us to identify K̃ with a sub-complex of K.
Thus, both π and s linear maps on the space of k-chains:

π : Ck(K) −→ Ck(K̃), s : Ck(K̃) −→ Ck(K),

which both commute with the boundary operator, indeed, for any simplex [a0, . . . , as] and ϵi ∈ K:

π ◦ ∂([a0, . . . , as]) = π

( s∑
i=0

ϵi[a0, . . . , ai−1, ai+1, . . . , as]
)

=
s∑

i=0
ϵi[π(a0), . . . , π(ai−1), π(ai+1), . . . , π(as)]

= ∂ ◦ π([a0, . . . , as]),
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with the exact same computation for s, so that the following diagram commutes:

C1(K) ∂ //

π





C0(K) ∂ //

π





{0}

��
C1(K̃) ∂ //

s

II

C0(K̃) ∂ //

s

II

{0}

OO

Therefore, π and s induces linear maps between the homology groups, making the following diagram
commute:

C0(K)
π ,,

��

C0(K̃)
s

ll

��
H0(K)

π̄ ,,
H0(K̃)

s̄
ll

Now let us consider P = {x1, . . . , xn} a finite set in (X, ρ) and denote accordingly P̃ := π(P ). Let us
introduce a Vietoris-Rips filtration of P denoted by:

∅ → Kδ0,1 → · · · → Kδ0,α0 → Kδ1,1 → · · · → Kδc,αC = K,

where 0 ≤ δ1 < · · · < δC are the ‘time-distance’ indices of the filtration and for the same value of
δ the simplices are ordered by their dimension and arbitrarily if they also have the same dimension.
Obviously δ0 = 0.
As π : P −→ P̃ preserves distances, it is clear that, up to allowing certain complexes to appear several
times in a row, the nested sequence (K̃i,j)(0≤i≤C,1≤j≤αi) is a Vietoris-Rips filtration for P̃ .
Let us fix some i ∈ 0, . . . , C and j ∈ 1, . . . , αi such that either i ≤ 1 or j = α0. This way we have:

∀a, b ∈ P, π(a) = π(b) =⇒ [a, b] ∈ Ki,j ,

by definition of the VR filtration (all simplices within δ0 = 0 ρ-distance have been added in the
filtration). Therefore, if π(a) = π(b), as ∂[a, b] = [a] + [b], we have that [a] = [b] in H0(Ki,j). As be
definition of s, for any a ∈ P we have π ◦ s ◦ π(a) = π(a), we have the following identity (the bars
denote classes in homology groups):

s̄ ◦ π̄([a]) = s ◦ π([a]) = [a].

Therefore, as also π ◦ s = Id, we have that s̄ and π̄ are inverse of one another, so that we have an
isomorphism H0(Ki,j) ∼= H0(K̃i,j) and the following diagram:

H0(K0,1) //

��

. . .

��

// H0(K0,α0−1) //

��

H0(K0,α0) // . . . // H0(KδC ,αC )

H0(K̃0,1) // . . . // H0(K̃0,α0−1) // H0(K̃0,α0) // . . . // H0(K̃δC ,αC )

As already mentioned, persistent homology of degree 0 is characterized by the multi-set of ‘death times’
δi. All death before K0,α0−1 are 0 so they do not add anything the weighted life-sum of Equation
(68). After K0,α0−1, the isomorphisms in the diagram show that the basis will evolve exactly in the
same way so the death times will be the same, therefore the weighted sum are the same in both spaces
for any P . Therefore, by definition, we have the equality between the persistent homology dimension.

Combining Proposition 17 with some results of Section 4.2, we get the main result of this Subsection:
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Theorem 6.1

For any bounded pseudo-metric space X we have: dimB(X) = dimPH0(X).

Proof. By Lemma 2, we have that dimB(X) = dimB(X/ ∼) and by Proposition 4.2 we have
dimPH0(X) = dimPH0(X/ ∼), the result follows immediately.

Numerical estimation Let us now briefly discuss how we numerically estimate the persistent
homology dimension, which is essentially the algorithm presented in Birdal et al. (2021) where we changed
the distance, which implies that we must evaluate on all data points for the last iterates. See also Adams
et al. (2020); Schweinhart (2020) for similar ideas.

The algorithm is based on the following result, proved by proposition 2 of Birdal et al. (2021) and
proposition 21 of Schweinhart (2020): If X is a bounded metric space with ∆ = dimd

PH0(X), then for all
ϵ > 0 and α ∈ (0,∆ + ϵ) there exists Dα,ϵ > 0 such that for all finite subset Xn = {x1, . . . , xn} of X we
have:

logEα(Xn) ≤ logDα,ϵ +
(

1 − α

∆ + ϵ

)
log(n). (70)

Then we can perform an affine regression of logEα(Xn) with respect to logn and get a slope a.
Moreover it is argued in Birdal et al. (2021) that the slope has good chance to be approximately the one
appearing in Equation (70), which gives us ∆ ≃ α

1−a .

Remark 24. The aforementioned algorithm works in pseudo metric spaces. Indeed as we tried to
explain formally in the proof of Proposition 17, PH0 in a pseudo-metric space only add some zeros to
the quantities Eα computed in its metric identifications. Therefore the above algorithm is approximating
dimρS

PH0(X/ ∼) which is proven in lemma 17 to be equal to dimρS

PH0(X). See those notations in the next
subsection.

All persistent homology computation presented here have been made with the package presented
in Pérez et al. (2021), which allows us to use more points in our persistent homology computation, e.g.
Birdal et al. (2021) was only using between 1000 points prior to convergence for AlexNet and 200 for
the other experiments. In our work we use up to 8000 points, which may allow us to better capture the
fractal behavior.

6.3 Correlation statistics
Now that we are actually able to approximate the intrinsic dimensions, it use natural to ask how we
can assess the quality of a generalization bounds and most importantly compare generalization bounds
between each other. Indeed we would like to compare our bounds to other work, especially those
considering euclidean based fractal dimensions, as in Hodgkinson et al. (2022), Şimşekli et al. (2021)
and Birdal et al. (2021).

Kendall’s coefficient, initially introduced in Kendall (1938), is a well-known statistics to assess the
co-monoticity of two observations, or rank correlation. It is usually denoted with letter τ .

If we consider ((gi, di)1≤i≤n) a sequence of observation of two random elements, in our case the
generalization error g and the intrinsic dimension d. In our setting it is very likely that both (gi) and
(di) will have pairwise distinct elements and that ties would therefore have little impact on the analysis.
Therefore we will assume it in our presentation to make it easier. To compute Kendall’s τ coefficient,
denoted τ((gi)i, (di)i), we look at all the possible pairs of couples (gi, di) and count 1 if they are ordered
the same way and −1 otherwise. The coefficients is then normalized by the total number of pairs which
is

(
n
2
)
. Therefore an analytical formula is:

τ((gi)i, (di)i) = 1(
n
2
) ∑

i<j

sign(gi − gj)sign(di − dj). (71)

However, as highlighted in Jiang et al. (2019), vanilla Kendall’s τ may fail to capture any notion
of causality in the correlation. Indeed, in our experiments we vary several hyperparameters (e.g. learning
rate L and batch size B), we want to somehow measure whether the observed correlation is due to the
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influence of a hyperparameter on both the generalization error and the persistent homology dimension
computation.

To overcome this issue, we follow the approach of Jiang et al. (2019), whose authors introduced
a notion of granulated Kendall’s coefficient. Let ΘL an ΘB denote the (finite) set in which our two
hyperparameters vary. We first compute τ coefficients when fixing (all but) one hyperparameter, and
then average those coefficients to get the granulated Kendall’s coefficients:

ψη := 1
|ΘB |

∑
b∈ΘB

τ
(
(g(η, b), d(η, b))η∈ΘL

)
, ψB := 1

|ΘL|
∑

b∈ΘL

τ
(
(g(η, b), d(η, b))b∈ΘB

)
, (72)

Where g(η, b) and d(η, b) denote the generalization and dimension obtained with learning-rate η
and batch size b. We can then average those coefficients to get one numerical measure:

Ψ := ψη + ψB

2 . (73)

Remark 25. Of course this analysis extends to more than 2 hyperparameters, but most of our experiments
used only learning-rate and batch size.

We created Python scripts to compute those granulated Kendall’s coefficients in the results presented
in this work.

Spearman’s rank correlation coefficient: For the sake of completeness, we record a third type
of correlation statistics in our experiments. Given observations (g1, . . . , gn) and (d1, . . . , dn) as above,
we first order them (for the usual order on R) to get ranked observations R(g) := (rg,1, . . . , rg,n) and
R(d) := (rd,1, . . . , rd,n). Spearman’s coefficient ρ is computed as the statistical correlation between the
ranked observations, namely:

ρ(g, d) = cov(R(g), R(d))
σ(R(g))σ(R(d)) .

6.4 Experimental analysis
6.4.1 Experimental setup

In our experiments, we follow the setting presented in Section 6.2, extending the one of Birdal et al. (2021),
except that we replace the Euclidean metric with the pseudo-metric ρS to compute the PH dimension.

In particular, we consider learning a neural network by using SGD, and choose the hypothesis
set WS,U as the optimization trajectory near the local minimum found by SGD9. Then, we numerically
estimate dimρS

PH0(WS,U ) by using the PH software provided in Pérez et al. (2021).
Here is a brief description of the method: given a neural network, its loss ℓ(w, z), and a dataset

S = (z1, . . . , zn), we compute the iterations of SGD for K⋆ iterations, (wk)K⋆

k=0, such that wK⋆ reaches near
a local minimum. We then run SGD for 5000 more iterations and set WS,U to {wK⋆+1, . . . , wK⋆+8000}.
We then approximate dimρS

PH0(WS,U ) by using the algorithm proposed in Birdal et al. (2021) by replacing
the Euclidean distance with ρS , as presented in Section 6.2. Thanks to Theorem

We experimentally evaluate dimρS

PH0(WS,U ) in different settings: (i) regression experiment with
Fully Connected Networks of 5 (FCN-5) and 7 (FCN-7) layers trained on the California Housing Dataset
(CHD) Kelley Pace and Barry (1997), (ii) training FCN-5 and FCN-7 networks on the MNIST dataset
Lecun et al. (1998) and (iii) training AlexNet Krizhevsky et al. (2017) on the CIFAR-10 dataset Krizhevsky
et al. (2014). All the experiments use standard ReLU activation and vanilla SGD with constant step-size.
We made both learning rate and batch size vary across a 6×6 grid. For experiments on CHD and MNIST
we also used 10 different random seeds. Batch sizes vary between 32 and 256 while learning rates vary
between 10−3 and 10−1.

Note that in the case of a classification experiment, one could not compute dimρS

PH0 using a zero-one
loss in Equation (28). Indeed, it would be equivalent to computing PH on the finite set {0, 1}n ⊂ Rn,
which trivially gives an upper box-counting dimension of 0. To overcome this issue, we compute dimρS

PH0

9Note that as the trajectories collected by SGD will only contain finitely many points, its dimension will be trivially 0.
However, as in Birdal et al. (2021), we treat this finite set an approximation to the full trajectory. This is justified since
even for infinite X, dimρS

PH0 (X) is computed based on finite subsets of X.
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(a) dimρS

PH0 (denoted dimS
PH0 in the figure) versus

accuracy gap for FCN-5 (top), FCN-7 (middle) on
MNIST and AlexNet (bottom) on CIFAR-10.

(b) dimρS

PH0 (denoted dimS
PH0 in the figure) versus

generalization gap for FCN-5 (top) and FCN-7
(bottom) trained on CHD.

Figure 3: dimρS

PH0 versus generalization error in various settings. Different colors indicate different learning
rates and different markers indicate different batch sizes.

using the surrogate loss (cross entropy in our case) and illustrate that it is still a good predictor of the
gap between the training and testing accuracies. For the sake of completeness, the behavior of dimρS

PH0

with respect to the actual loss gap is reported in Figures 4a and 4b, even though it may be of no practical
interest, as opposed to using the accuracy gap as in Figure 3a.

6.4.2 Numerical results

In order to compare our data-dependent intrinsic dimension with the one introduced in Birdal et al.
(2021), which is the PH dimension induced by the Euclidean distance on the trajectory and denoted
dimEucl

PH0 , we compute various correlation statistics, namely the Spearman’s rank correlation coefficient ρ
Kendall and Stuart (1973) and Kendall’s coefficient τ Kendall (1938). We also use the mean Granulated
Kendall’s Coefficient Ψ introduced in Jiang et al. (2019), which aims at isolating the influence of each
hyperparameter and according to the authors could better capture the causal relationships between the
generalization and the proposed complexity metric (the intrinsic dimension in our case). For more details
on the exact computation of these coefficients, please refer to Section 6.3. Therefore (ρ,Ψ, τ) are our
main indicators of performance10.

Figures 3a and 3b depict the data-dependent dimension versus the generalization gap, as computed
in different settings. We observe that, in all cases, we have a strong correlation between dimρS

PH0(WS,U )
and the generalization gap, for a wide range of hyperparameters. Additional experiments, using bigger
convolutional models and therefore computed with less experiments are presented in Figures 5a and 5b.

We also observe that the highest learning rates and smallest batch sizes seem to give less correlation,
which is similar to what was observed in Birdal et al. (2021) as well. This might be caused by the increased

10All those coefficients are between −1 and 1, where the value of 1 indicates a perfect positive correlation.
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(a) Plots of dimρS

PH0 against the loss gap (as opposed
to the accuracy gap) for a FCN-7 trained on MNIST
dataset.

(b) Plots of dimρS

PH0 against the loss gap (as opposed
to the accuracy gap) for a FCN-5 trained on MNIST
dataset.

Figure 4: dimρS

PH0 versus loss gaps computed with the surrogate loss used during training (i.e. cross-
entropy loss) for the same classification experiments than Figure 3a. Different colors indicate different
learning rates and different markers indicate different batch sizes.

(a) Plots of dimρS

PH0 against the accuracy gap for an
AlexNet trained on MNIST dataset.

(b) Plots of dimρS

PH0 against the accuracy gap for a
LeNet trained on MNIST dataset.

Figure 5: dimρS

PH0 versus accuracy gap for convolutional networks trained on the MNIST dataset.

noise as we suspect that the point clouds in those settings show more complex fractal structures and hence
require more points for a precise computation of the PH dimension.

Next, correlation coefficients, for the same experiments, are reported in Tables 3, 1 and 4. The
results show that on average our proposed dimension always yields improved metrics compared to the
dimension introduced in Birdal et al. (2021).

Table 1: Correlation coefficients on MNIST

Model Dim. ρ ψlr ψbs Ψ τ

FCN-5 dimeucl
PH0 0.62 ± 0.10 0.78 ± 0.07 0.80 ± 0.10 0.78 ± 0.08 0.47 ± 0.07

FCN-5 dimρS

PH0 0.73 ± 0.07 0.84 ± 0.06 0.78 ± 0.10 0.81 ± 0.07 0.56 ± 0.06

FCN-7 dimeucl
PH0 0.80 ± 0.04 0.92 ± 0.07 0.85 ± 0.11 0.88 ± 0.04 0.62 ± 0.04

FCN-7 dimρS

PH0 0.89 ± 0.02 0.96 ± 0.05 0.84 ± 0.05 0.90 ± 0.04 0.73 ± 0.03

The improvement is particularly better in the regression experiment we performed (as the classification
task yields larger variations in the metrics, see Table 1). This may indicate that the proposed dimension
may be particularly pertinent in specific settings. Moreover, increasing the size of the model, in all
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Table 2: Correlation coefficients on MNIST, with respect to loss gap

Model Dim. ρ ψlr ψbs Ψ τ

FCN-5 dimeucl
PH0 0.76 ± 0.06 0.33 ± 0.18 0.75 ± 0.09 0.54 ± 0.11 0.58 ± 0.05

FCN-5 dimρS

PH0 0.73 ± 0.09 0.30 ± 0.20 0.75 ± 0.09 0.52 ± 0.12 0.57 ± 0.07

FCN-7 dimeucl
PH0 0.86 ± 0.05 0.77 ± 0.12 0.80 ± 0.08 0.79 ± 0.06 0.69 ± 0.06

FCN-7 dimρS

PH0 0.90 ± 0.03 0.80 ± 0.10 0.79 ± 0.06 0.80 ± 0.06 0.75 ± 0.05

Table 3: Correlation coefficients on CHD

Model Dim. ρ ψlr ψbs Ψ τ

FCN-5 dimeucl
PH0 0.77 ± 0.08 0.62 ± 0.11 0.46 ± 0.14 0.54 ± 0.11 0.59 ± 0.07

FCN-5 dimρS

PH0 0.87 ± 0.05 0.75 ± 0.10 0.61 ± 0.13 0.68 ± 0.10 0.71 ± 0.09

FCN-7 dimeucl
PH0 0.40 ± 0.09 0.07 ± 0.13 0.25 ± 0.11 0.16 ± 0.08 0.28 ± 0.07

FCN-7 dimρS

PH0 0.77 ± 0.08 0.63 ± 0.05 0.58 ± 0.10 0.62 ± 0.06 0.77 ± 0.08

experiments, seems to have a positive impact on the correlation. We suspect that this might be due to
the increasing local-Lipschitz constant of the network.

The values of dimρS

PH0 against the actual loss gap (computed based on the cross entropy loss) are
plotted in Figures 4b and 4a. The corresponding correlation statistics are reported in Table 2. While
this has probably little practical interest compared to the plots shown in the main part of the paper,
it highlights the fact that the correlation is indeed still there. As before, we note that low batch sizes
and high learning rates yields better results, but that the correlation is very good for middle range
values of those hyperparameters. As in the regression experiment, one can observe on Figures 4b and
4a that a bigger network gives better empirical correlation between the data-dependent dimension and
the generalization error. Another interesting observation is that there seems to be more noise in the
coefficients with respect to the loss gap than with respect to the accuracy gap. In almost all experiments,
again, the proposed dimension is close or better than the one proposed in (Birdal et al., 2021).

6.4.3 Robustness analysis

The computation of ρS(w,w′) requires the exact evaluation of the loss function on every data point
{z1, . . . , zn} for every w,w′ ∈ WS,U . This introduces a computational bottleneck in case where n is
excessively large. To address this issue, in this section we will explore an approximate way of computing
dimρS

PH0 . Similar to the computation of a stochastic gradient, instead of computing the distance on every
data point, we will first draw a random subset of data points T ⊂ S, with |T | ≪ n and use the following
approximation ρS(w,w′) ≈ ρT (w,w′) := 1

|T |
∑

z∈T |ℓ(w, z) − ℓ(w′, z)|.
We now conduct experiments to analyze the robustness of the computation of dimρS

PH0 with respect
to varying size of random subsets T . More precisely, we randomly select a subset T ⊂ S whose size varies
between 2% and 99% of the size dataset S and compute the PH dimension using the approximate pseudo-
metric. Note that the whole dataset S is of course still used to produce the SGD iterates. Figure 6 presents
results on the MNIST and CHD datasets in terms of the relative error, i.e., | dimρT

PH0 − dimρS

PH0 |/ dimρS

PH0 .
The results show that the proposed dimension is significantly robust to the approximation of the pseudo-
metric: even with 40% of the data, we achieve almost identical results as using the full dataset.
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Table 4: Correlation coefficients with AlexNet on CIFAR-10

Model Dim. ρ ψlr ψbs Ψ τ

AlexNet dimeucl
PH0 0.86 0.78 0.84 0.81 0.68

AlexNet dimρS

PH0 0.93 0.87 0.81 0.84 0.78

Table 5: Correlation coefficients with convolutional models on MNIST

Model Dim. ρ ψlr ψbs Ψ τ

AlexNet dimeucl
PH0 0.85 0.78 0.77 0.77 0.67

AlexNet dimρS

PH0 0.88 0.78 0.77 0.77 0.70

LeNet dimeucl
PH0 0.74 0.78 0.77 0.78 0.57

LeNet dimρS

PH0 0.80 0.80 0.77 0.79 0.62

Figure 6: Robustness experiment using a FCNN trained on MNIST (Left) and CHD (Right). x-axis
represents the proportion of the data T used to compute the metric, y-axis is the relative error with
respect to the full dataset based dimension.

7 Conclusion
In this project, we proved generalization bounds that do not require the Lipschitz continuity of the
loss, which can be crucial in modern neural network settings. We linked the generalization error to
a data-dependent fractal dimension of the random hypothesis set. We first extended some classical
covering arguments to state a bound in the case of a fixed hypothesis set and then proved a result in
a general learning setting. While some intricate mutual information terms between the geometry and
the data appeared in this bound, we presented a possible workaround by the introduction of a stability
property for the coverings of the hypothesis set. Finally, we made a connection to persistent homology,
which allowed us to numerically approximate the intrinsic dimension and thus support our theory with
experiments.

Certain points remain to be studied concerning our results. First the existence of differentiable
persistent homology libraries Hofer et al. (2018, 2019) open the door to the use of our intrinsic dimension
as a regularization term as in Birdal et al. (2021). From a theoretical perspective, as in previous works, the
main drawbacks of this work remain the presence of non-estimable mutual information terms. However,
introducing those terms allowed us to display interesting proof techniques. We hope that future work may
bring a better understanding on this issue, which could be achieved by leveraging stability notions as in
Section 5.3 or by considering the convergence of the random pseudo-metric ρS to its expectation. Those
research directions remain to be explored. Finally, our proof techniques could be refined, for example by
using the celebrated chaining method Ledoux and Talagrand (1991); Clerico et al. (2022), to improve our
theoretical results or weaken the assumptions.
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Appendix A Notations

Nomenclature
dimd

B Box counting dimension computed with (pseudo-)metric d.

ℓ : Rd × Z −→ R Model ‘loss’ function, understood as the composition of a loss and a parametric model.

R̂S(·) Empirical risk.

dimd
H Hausdorff dimension computed with (pseudo-)metric d.

dimd
B Lower box counting dimension computed with (pseudo-)metric d.

BX Borel σ-algebra associated to a topological space X.

Hs s-Hausdorff measure.

R(·) Population risk.

WS,U Sample path generated by the learning algorithm.

Z = X × Y Data space, made of features X and targets Y.

µz Data probability distribution over Z.

diam(U) Diameter of the set U .

X̃ Independent copy of the random element X.

dimd

B Upper box counting dimension computed with (pseudo-)metric d.

|A| Cardinal of A if A is a finite set.

Nρ
δ Centers of a covering by closed δ-balls for (pseudo-)metric ρ, if ρ is omitted it corresponds to the

euclidean distance.

S = (z1, . . . , zn) ∈ Zn Dataset of i.i.d. random variables following the data distribution, i.e. S ∼ µ⊗n
z .

Appendix B Additional theoretical results
B.1 An expected bound using uniform hypothesis set stability
In this subsection, we present a slightly different bound than the ones presented in the main part of this
document.

This bound uses the uniform hypothesis set stability assumption, introduced by Foster et al. (2020)
and explicitly described by Equation (51). Moreover, we still make Assumption 1 of bounded continuous
losses.

The particularity of this bound is that it involves an expected upper-box counting dimension, for
which the pseudo-metric, still define by Equation (28), is computed using a validation dataset independent
from the training dataset S and still following the data distribution µz. Moreover, using results from
(Foster et al., 2020), this bound can easily be turned into a high probability bound, thanks to the
hypothesis set stability, but it would still involve the aforementioned expected dimension.

While this bound may have less practical interest than the ones presented in Section 4 and 5, we
discuss it for the following reasons:

1. It does not involve any mutual information term.

2. The assumptions on which it relies are more realistic than the setting of Section 5.3.
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3. It is a particularly interesting example of the grouping technique introduced in Section 5.3 and how
it can help to deal with the statistical dependence between the hypothesis set and the data. We
also want to highlight that this proof technique may be more general and extend to different type
of results, for instance it could be used in the Lipschitz setting of Şimşekli et al. (2021).

Let us first restate the hypothesis set stability assumption from (Foster et al., 2020), by changing
to more suitable notations.

Assumption 4. There exists β > 0 and α > 0 such that for all S, S′ ∈ Zn differing only by one element,
for all u ∈ U , we have:

∀w ∈ WS,U , ∃w′ ∈ WS′,U , ∀z ∈ Z, |ℓ(w, z) − ℓ(w′, z)| ≤ β

nα

Remark 26. Following Foster et al. (2020), one should think of parameter α as being α ≃ 1. Regarding
the following theorem, it means that we will probably lose in the convergence rate in n, but with a great
benefit which is to dismiss any mutual information term.

In the proof of this section, we will separate the set of indices {1, . . . , n} into H groups of size J ,
as we did in Section 5.3. We will always assume that HJ = n, the discussion of what happens when
this is not the case can be made by following exactly the same steps than in Section 5.3, leveraging the
bounded loss assumption, the details are left to the reader to focus on the main proof ideas.

Theorem B.1. Expected bound without mutual information

We make assumptions 1, 2 and 4. We define J = n2α/3 and assuming nα/3 is an integer we
consider S̃J ∼ µ⊗J

z , independent of S.
Then for all δ, γ, ϵ > 0, there exists δγ,ϵ,n > 0 such that for all δ ≤ δγ,ϵ,n we have the expected
bound:

E

[
sup

w∈WS,U

(
R(w) − R̂S(w)

)]
≤ 2(δ +Bγ) + 2

√
β2 + 4B2

(
ϵ+ E

[
dim

dS̃J

B (WS,U )
])

log(1/δ)
n

2α
3

Proof. Let us introduce S̃ := {z̃1, . . . , z̃n} ∼ µ⊗n
z independent of S and separate the set of indices

{1, . . . , n} into H groups of size J such that HJ = n, (H,J ∈ N+), so that we have a disjoint union:

{1, . . . , n} =
⋃

1≤k≤H

Jk.

Let us write, for w ∈ WS,U :

R(w) − R̂S(w) = 1
n

H∑
k=1

∑
i∈Jk

(
ℓ(w, zi) − R(w)

)
. (74)

Let us denote SJk
:= (zi)i∈Jk

and S(Jk) ∈ Zn such that for all i, S(Jk)i = zi if i ∈ Jk and S(Jk)i = z̃i

if i ∈ Jk.
By an immediate recursion we have:

∀w ∈ WS,U , ∃w′
k ∈ WS(Jk),U , ∀z ∈ Z, |ℓ(w, z) − ℓ(w′

k, z)| ≤ Jβ

nα
. (75)

Therefore, taking such w,w′
1, . . . , w

′
H we get by the triangle inequality that

R(w) − R̂S(w) ≤ 1
n

H∑
k=1

∑
i∈Jk

{
|ℓ(w, zi) − ℓ(w′

k, zi)| + Ez∼µz

[
ℓ(w, z) − ℓ(w′

k, z)
]

+ R(w′
k) − ℓ(w′

k, zi)
}

≤ 2J
2Hβ

n1+α
+

H∑
k=1

sup
w∈WS(Jk),U

1
n

∑
i∈Jk

(
R(w) − ℓ(w, zi)

)
,
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nd therefore

sup
w∈WS,U

(
R(w) − R̂S(w)

)
≤ 2βJ

nα
+

H∑
k=1

sup
w∈WS(Jk),U

1
n

∑
i∈Jk

(
R(w) − ℓ(w, zi)

)
︸ ︷︷ ︸

:=Σk

. (76)

Now let us temporary introduce a third dataset S′ ∼ µ⊗n
z independent of S and S̃. We will bound

the expectation of Σk using a symmetrization technique and Rademacher complexity. The covering
argument is left for the end of the proof.
Using properties of the conditional expectation we get:

E[Σk] = E

[
sup

w∈WS(Jk),U

1
n

∑
i∈Jk

E[ℓ(w, z′
i) − ℓ(w, zi)|SJk

]
]
.

Now let us introduce i.i.d. Rademacher random variables σ1, . . . , σn independent of all the other
random variables. We have:

E[Σk] ≤ E

[
E

[
sup

w∈WS(Jk),U

1
n

∑
i∈Jk

(
ℓ(w, z′

i) − ℓ(w, zi)
)∣∣∣∣SJk

]]
= E

[
sup

w∈WS(Jk),U

1
n

∑
i∈Jk

(
ℓ(w, z′

i) − ℓ(w, zi)
)]

= E

[
sup

w∈WS(Jk),U

1
n

∑
i∈Jk

σi

(
ℓ(w, z′

i) − ℓ(w, zi)
)]

≤ 2E
[

sup
w∈WS(Jk),U

1
n

∑
i∈Jk

σiℓ(w, zi)
]
.

Now, by independence of the σi with respect to the other random variables, we have by Fubini’s
theorem:

E[Σk] ≤ 2
H
E

[
Rad

(
ℓ(WS(Jk),U , SJk

)
)]
. (77)

Given a set W and (xi)i∈A ∈ Z |A| we will denote by Nδ(W, (xi)i) the centers of a δ-cover by closed
delta balls of W with pseudo-metric: (w,w′) 7→

∑
i∈A |ℓ(w, zi) − ℓ(w′, zi)|.

A key argument to the proof is to note that by independence between S(Jk) and SJk
, the quantities

Rad
(
ℓ(WS(Jk),U , SJk

)
)

and Rad
(
ℓ(WS,U , S̃Jk

)
)

have the same distribution and therefore:

E[Σk] ≤ 2
H
E

[
Rad

(
ℓ(WS,U , S̃J)

)]
,

where S̃J arbitrary denotes one of the S̃Jk
(they have the same distributions).

Now we now that we have almost surely:

dim
dS̃J

B (WS,U ) = lim sup
δ→0

log |Nδ(WS,U , S̃J)|
log(1/δ) ,

therefore, by applying Egoroff’s theorem, we can get that for fixed ϵ, γ > 0, there exists a set set
Ωγ ∈ F⊗2n

Z ⊗ FU with P(Ωγ) ≥ 1 − γ such that on Ωγ the convergence above is uniform and we have,
for δ small enough:

log |Nδ(WS,U , S̃J)| ≤
(
ϵ+ dim

dS̃J

B (WS,U )
)

log(1/δ).
Now we can introduce a covering and apply Massart’s lemma to write that for all δ > 0 we have
almost surely (with a slight abuse of notation on S̃J):

Rad
(
ℓ(WS,U , S̃J)

)
≤ δ + Eσ

[
sup

w∈Nδ(WS,U ,S̃J )

1
J

J∑
i=1

σiz̃i

]

≤ δ +B

√
2 log |Nδ(WS,U , S̃J)|

J
.
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Hence we can write, using the fact that we can bound the Rademacher complexity by B, that for δ
small enough:

E[Σk] ≤ 2
H
E

[
Rad

(
ℓ(WS,U , S̃J)

)]
≤ 2B

H
γ + 2

H
E

[
1Ωγ Rad

(
ℓ(WS,U , S̃J)

)]
≤ 2B

H
γ + 2B

H
E

[
1Ωγ

√
2 log |Nδ(WS,U , S̃J)|

J

]
.

Therefore, by Jensen’s inequality:

E[Σk] ≤ 2B
H
γ + 2B

H

√
2
(
ϵ+ E

[
dim

dS̃J

B (WS,U )
])

log(1/δ)
J

.

Putting everything together we get, still for δ small enough:

E

[
sup

w∈WS,U

(
R(w) − R̂S(w)

)]
≤ 2βJ

nα
+ 2δ + 2Bγ +B

√
8
J

√(
ϵ+ E

[
dim

dS̃J

B (WS,U )
])

log(1/δ). (78)

We can see in equation 78 that there is a trade-off to be made in the values of K and J . We want J
of the form J = nλ with λ ∈ (0, 1]. We want the two terms in which the appears to be of the same
order magnitude in n, which leads to:

J

nα
= 1√

J
.

And therefore we ask that α− λ = λ/2 and gives us the fundamental result:

λ = 2α
3 (79)

So that, for δ small enough (depending on the values of n and γ):

E

[
sup

w∈WS,U

(
R(w) − R̂S(w)

)]
≤ 2(δ +Bγ) + 2

√
β2 + 4B2

(
ϵ+ E

[
dim

dS̃J

B (WS,U )
])

log(1/δ)
n

2α
3

. (80)

Thus the final result with a rate in n of α/3. Note that if α = 1 (which is reasonable, see Foster et al.
(2020)), then we get a rate in 1/3, while with a fixed hypothesis space we had a rate in 1/2. Therefore
avoiding the coupling (and therefore the mutual information term) made us lose in the convergence
rate.

Remark 27. As we can see in Theorem B.1, as typically α ≃ 1, we removed the mutual information
term at the cost of losing in the convergence rate in n, which is now typically in n−1/3.

Remark 28. As already mentioned, Theorem B.1 could be turned into a high probability bound by using
the results from (Foster et al., 2020), we would still have an expected fractal dimension term though.

Appendix C Some code samples
Obviously, it is not possible to include all the code of the experiments in this report. However, most
of this code is very classic (models, training, data handling) and does not need a particular attention.
We just report in this section a code sample illustrating how the data-dependent intrinsic dimension is
computed from the iterations of a neural network. Part of this code is inspired by (Birdal et al., 2021),
but it has been significantly accelerated, especially by changing the way distance matrices are handled.

Listing 1 present a code sample used to approximate the data-dependent persistent homology
dimension dimρS

PH0(WS,U ). More precisely, the function fast_dimension_computation takes as inputs a list of
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vectors ((ℓ(w1, zi))1≤i≤n, . . . , (ℓ(wK , zi))1≤i≤n) for some K last iterations of training and computes the
corresponding distance matrix (ρS(wi, wj))1≤i,j≤K , it then uses it to approximate the dimension using
Equation (70).

1

2 import time
3 from pathlib import Path
4

5 import numpy as np
6 import torch
7 from loguru import logger
8 from tqdm import tqdm
9 from gph. python import ripser_parallel

10 from sklearn . metrics . pairwise import pairwise_distances
11

12

13 def sample_W (W, nSamples , isRandom =True):
14 n = W. shape [0]
15 random_indices = np. random . choice (n, size=nSamples , replace = False )
16 return W[ random_indices ]
17

18

19 def ph_dim_from_distance_matrix (dm: np.ndarray ,
20 min_points =200 ,
21 max_points =1000 ,
22 point_jump =50 ,
23 h_dim =0,
24 alpha : float = 1.,
25 seed: int = 42) -> float :
26 """
27 This functions :
28 - turn W into a torch tensor
29 - compute the distance matrix
30 - use it to compute PH dim
31

32 : param dm: distance matrix , should be of shape (N, N)
33 """
34 assert dm.ndim == 2, dm
35 assert dm. shape [0] == dm. shape [1] , dm. shape
36

37 np. random .seed(seed)
38

39 test_n = range ( min_points , max_points , point_jump )
40 lengths = []
41

42 for points_number in test_n :
43

44 sample_indices = np. random . choice (dm. shape [0] , points_number , replace = False )
45 dist_matrix = dm[ sample_indices , :][: , sample_indices ]
46

47 diagrams = ripser_parallel ( dist_matrix , maxdim =0, n_threads =-1, metric ="
precomputed ")[’dgms ’]

48

49 d = diagrams [ h_dim ]
50 d = d[d[:, 1] < np.inf]
51 lengths . append (np. power ((d[:, 1] - d[:, 0]) , alpha ).sum ()) # The fact that \

alpha = 1 appears here
52

53 lengths = np. array ( lengths )
54

55 # compute our ph dim by running a linear least squares
56 x = np.log(np. array (list( test_n )))
57 y = np.log( lengths )
58 N = len(x)
59 m = (N * (x * y).sum () - x.sum () * y.sum ()) / (N * (x ** 2).sum () - x.sum () ** 2)
60 b = y.mean () - m * x.mean ()
61

62 error = ((y - (m * x + b)) ** 2).mean ()
63

64 logger . debug (f"Ph Dimension Calculation has an approximate error of: { error }.")
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65

66 return alpha / (1 - m)
67

68

69 def fast_dimension_computation (w: np.ndarray ,
70 min_points =200 ,
71 max_points =1000 ,
72 point_jump =50 ,
73 h_dim =0,
74 alpha : float = 1.,
75 seed: int = 42,
76 save_dir : str = None ,
77 metric : str = " euclidean "):
78

79 assert w. shape [0] <= max_points , (w. shape [0] , max_points )
80 assert w. shape [0] >= min_points , (w. shape [0] , min_points )
81

82 starting_time = time.time ()
83 dm = pairwise_distances (w, metric = metric )
84 logger . debug (f" Distance matrix computation time: { round (time.time () - starting_time ,

2)}s")
85

86 if save_dir is not None:
87 save_path = Path( save_dir ) / " distance_matrix .npy"
88 save_path . parent . mkdir ( parents =True , exist_ok =True)
89 np.save(str( save_path ), dm)
90

91 return ph_dim_from_distance_matrix (dm ,
92 min_points ,
93 max_points ,
94 point_jump ,
95 h_dim ,
96 alpha ,
97 seed)

Listing 1: Main part of the code used to estimate our data-dependent intrinsic dimension.
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